Deuterium retention in the material of welded seam rafm steel EK-181 (Rusfer)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time, deuterium retention in the welded seam of the domestic reduced-activation ferritic-martensitic (RAFM) steel EK-181 (Rusfer) was investigated in comparison with the usual samples of the same steel. The welded seam was obtained by the argon arc welding method of two sheets of steel EK-18 with a thickness of 2 mm. Samples were kept in gaseous deuterium at a pressure of 5 atmospheres and temperatures in the range of 623–773 K for 25 hours. The number of retained deuterium was determined by thermal desorption spectrometry (TDS). It was found that after exposure in the gas, samples carved from a weld retained about 2 times more deuterium than samples from conventional steel EK-181. The number of peaks in TDS spectra is the same for both ordinary steel and the area of the weld. The TDS spectra modeling was carried out using the TMAP7 code. The proposed model includes the presence of oxides on the surface and a high concentration of defects in the surface layer of samples, wherein well describing the experimental TDS spectra. The possible nature of hydrogen states in steel is discussed, which determines the features of TDS spectra.

Texto integral

Acesso é fechado

Sobre autores

A. Golubeva

National Research Center “Kurchatov Institute”

Autor responsável pela correspondência
Email: av_golubeva@nrcki.ru
Rússia, Moscow

A. Persianova

National Research Center “Kurchatov Institute”

Email: av_golubeva@nrcki.ru
Rússia, Moscow

V. Efimov

National Research Nuclear University “MEPhI”

Email: av_golubeva@nrcki.ru
Rússia, Moscow

N. Bobyr

National Research Center “Kurchatov Institute”

Email: av_golubeva@nrcki.ru
Rússia, Moscow

V. Chernov

National Research Nuclear University “MEPhI”; JSC “Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials”

Email: av_golubeva@nrcki.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Ioltukhovskiy A.G., Leonteva-Smirnova M.V., Solonin M.I., Chernov V.M., Golovanov V.N., Shamardin V.K., Bulanova T.M., Povstyanko A.V., Fedoseev A.E. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors // J. Nucl. Mater. 2002. P. 532–535.
  2. Chernov V.M., Leonteva-Smirnova M.V., Potapenko M.M., Budylkin N.I., Devyatko Yu.N., Ioltoukhovskiy A.G., Mironova E.G., Shikov A.K., Sivak A.B., Yermolaev G.N., Kalashnikov A.N., Kuteev B.V., Blokhin A.I., Loginov N.I., Romanov V.A., Belyakov V.A., Kirillov I.R., Bulanova T.M., Golovanov V.N., Shamardin V.K., Strebkov Yu.S., Tyumentsev A.N., Kardashev B.K., Mishin O.V., Vasiliev B.A. Structural materials for fusion power reactors—the RF R&D activities // Nucl. Fusion. 2007. V. 47. P. 839–848.
  3. Kim H.S., Moon H.K., Park C.K., Jung Y.J., Ha M.S., Park S.H., Joo Y.M., Joo J.K., Kang S.G., Seo J.Y. Han Y.H., Lim N.J., Yoon B.H., Choi S.Y., Hwang H.S., Hong K.H., Ahn H.J., Lee Y.J., Kim B.C., Lee H.G., Jung K.J., Sa J.W., Choi C.H., Chung W.H., Kim H.K., Kim Y.G., Kim G.H., Hong Y.S., Martinez J.M., Martin A., Jing J., Privalov M., Xiang B., Lobinger F., Pedrosa N., Rodilla E., Utin Y., Mestric A., Jung Y.S., Tok J.Y.W., Park K.H., Kim H.C., Seok S.H., Park D.B., Moon G.H., Lee J.H., Lim K.S., Kim J.B., Yeo H.K., Lee J.J. Manufacturing completion of the first ITER vacuum vessel sector // Nucl. Fusion. 2022. V. 63. 076044 (14 p.).
  4. Golubeva A.V., Bobyr N.P., Cherkez D.I., Spitsyn A.V. Hydrogen interaction with the low activation ferritic-martensitic steel EK-181 (Rusfer) // J. Nucl. Mater. 2013. V. 438. P. s983–s987.
  5. Денисов Е.А., Компаниец Т.Н., Мурзинова М.А., Юхимчук А.А. (мл.). Накопление и транспорт водорода в ферритно-мартенситной стали РУСФЕР-ЭК-181 // Журнал технич. физики. 2013. T. 83. Вып. 6. C. 38–44.
  6. Spitsyn A.V., Golubeva A.V., Bobyr N.P., Khripunov B.I., Cherkez D.I., Petrov V.B., Mayer M., Ogorodnikova O.V., Alimov V.Kh., Klimov N.S., Putrik A., Chernov V.M., Leontieva-Smirnova M.V., Gasparyan Yu.M., Efimov V.S. Retention of deuterium in damaged low-activation steel Rusfer (EK-181) after gas and plasma exposure // J. Nucl. Mater. 2014. V. 455. Iss. 1–3. P. 561–567.
  7. Shi Yi., Zhang G., Liao H., Wang Xi., Wu Sh. Optimization of electron beam butt welding of 32 mm CLF-1 steel T-joints of Test Blanket Module (TBM) in ITER // Fusion Eng. & Design. 2020. V. 161. P. 111931.
  8. Wen-Hua D., Yun-Tao S., Ji-Jun X., Chao F., Wei J., Wu J.F. Investigation on the microstructure and mechanical properties of autogenous laser welding joint of ITER BTCC case lid // Fus. Eng. &Design. 2020. V. 156. P. 11160.
  9. Леонтьева-Смирнова М.В., Агафонов А.Н., Ермолаев Г.Н., Иолтуховский А.Г., Можанов Е.М., Ревизников Л.И., Цвелев В.В., Чернов В.М., Буланова Т.М., Голованов В.Н., Островский З.О., Шамардин В.К., Блохин А.И., Иванов М.Б., Козлов Э.В., Колобов Ю.Р., Кардашев Б.К. Микроструктура и механические свойства малоактивируемой ферритно-мартенситной стали ЭК-181 (RUSFER-EK-181) // Перспективные материалы. 2006. Т. 6. С. 40–52.
  10. Leontieva-Smirnova M.V., Agafonov A.N., Mozhanov E.M., Chernov V.M. Weldability of heat-resistant chromium (12%) steels EK-181 and ChS-139 // Problems of atomic science and technology. Ser. Fusion. 2011. Iss. 4. P. 14–21.
  11. Jiang Zh., Ren L., Huang J., Ju Xi., Wu H., Huang Q., Wu Y. Microstructure and mechanical properties of the TIG welded joints of fusion CLAM steel // Fusion Engin. Design. 2010. V. 85. P. 1903–1908.
  12. Golubeva A.V., Bobyr N.P., Cherkez D.I., Gasparyan Yu.M., Khripunov B.I., Klimov N.S., Spitsyn A.V., Chernov V.M. Hydrogen isotopes interaction with ferritic-martensitic steel Ek-181(Ek-181-Rusfer): Review of results obtained // Perspective mater. 2021. No. 4. P. 5–18.
  13. Danilov I.V., Kapyshev V.K., Kovalenko V.G., Kalashnikov A.N. Facility for studies of structural materials permeability to hydrogen isotopes // Questions Atomic science Techniq. Ser. Fusion. V. 37. Iss. 2. P. 38–44.
  14. Бекман И.Н. Математический аппарат диффузии. Москва: Юрайт. 2019. 95 с.
  15. Rusinov A.A., Gasparyan Y.M., Perelygin S.F., Pisarev A.A., Stepanov S.O., and Trifonov N.N. A setup for thermodesorption measurements. // Instr. Exp. Techn., 2009. V. 52. P. 871–876.
  16. Голубева А.В., Алимов В.Х., Ефимов В.С., Бобырь Н.П., Козлов Д.А. Влияние условий хранения на выход дейтерия из малоактивируемых ферритно-мартенситных сталей // Поверхность. Рентгеновские синхротронные и нейтронные исследования. 2024. (В печати).
  17. Koyama M., Rohwerder M., Tasan C.C., Bashir A., Akiyama E., Takai K., Raabe D., Tsuzaki K. Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation // Mater. Sci. Techn. 2017. V. 33. № 13. P. 1481–1496.
  18. Алимов В.Х. Облучение малоактивируемых ферритно-мартенситных сталей дейтериевой плазмой. Обзор данных о модификации поверхности, диффузии и накоплении дейтерия // Поверхность. Рентгеновские синхротронные и нейтронные исследования. 2024. (В печати).
  19. Wu W., Zhang X., Li W., Fu H., Liu S., Wang Y., Li J. Effect of hydrogen trapping on hydrogen permeation in a 2205 duplex stainless steel: Role of austenite–ferrite interface // Corrosion Science. 2022. V. 202. P. 110332.
  20. Frappart S., Feaugas X., Creus J., Thebault F., Delattre L., Marchebois H. Study of the hydrogen diffusion segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test // J. Phys. Chem. Solids. 2010. V. 71. № 10. P. 1467–1479.
  21. Mizuno M., Anzai H., Aoyama T., Suzuki T. Determination of hydrogen concentration in austenitic stainless steels by thermal desorption spectroscopy // Mater. Trans., JIM. 1994. V. 35. № 10. P. 703–707.
  22. Longhurst G.R. TMAP7 User Manual. Idaho National Laboratory (INL). 2008. 79 p.
  23. Шишкова Т., Голубева А., Розенкевич М. Изотопный эффект при взаимодействии водорода с материалами термоядерных реакторов // Russian J. Phys. Chem. A. 2023. V. 97. № 10. P. 1371–1392.
  24. Xu Yu-P., Lu T., Li Xi.-Ch., Liu F., Liu H.-D., Wang J., An Zh.-Q., Ding F., Hong S.-H., Zhou H.-Sh., Luo G.-N. Influence of He ions irradiation on the deuterium permeation and retention behavior in the CLF-1 steel // Nuclear Instruments Methods Phys. Research Section B: Beam Interactions Mater. Atoms. 2016. V. 388. P. 5–8.
  25. Chen C.F., Yu H.B., Zheng S.Q. First-principles study of hydrogen diffusion mechanism in Cr2O3 // Sci. China Techn. Sci. 2011. V. 54. P. 88–94.
  26. Serra E., Perujo A. Influence of the surface conditions on permeation in the deuterium–MANET system // J. Nuclear mater. 1997. V. 240. № 3. P. 215–220.
  27. Арбузов В.Л., Воронин В.И., Гощицкий Б.Н., Данилов С.Е., Казанцев В.А., Катаева Н.В., Сагарадзе В.В. Особенности структурно-фазовых состояний и физических свойств ферритно-мартенситной стали ЭК-181 после различных термообработок // Вопр. атомной науки и техники. Серия: Материаловедение и новые материалы. 2015. № 1. С. 8–21.
  28. Katsuta H., Furukawa K. Hydrogen and deuterium transport through type 304 stainless steel at elevated temperatures // J. Nuclear Sci. Techn. 1981. V. 18. № 2. P. 143–151.
  29. Чернов В.М., Леонтьева-Смирнова М.В., Потапенко М.М., Полехина Н.А., Литовченко И.Ю., Тюменцев А.Н., Астафурова Е.Г., Хромова Л.П. Структурно-фазовые превращения и физические свойства ферритно-мартенситных 12%-ных хромистых сталей ЭК-181 и ЧС-139 // Журнал технич. физики. 2016. Т. 86. № 1. С. 99–104.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Surface of EK-181 steel samples, SEM data: (a) argon-arc welding seam; (b) area inside the rectangle in Fig. 1a with high magnification; (c) surface of EK-181 steel before welding, scanning electron microscope data.

Baixar (630KB)
3. Fig. 2. Different areas of the weld. SEM images.

Baixar (498KB)
4. Fig. 3. Module for holding samples in gas: 1 – exposure chamber surrounded by an external screen; 2 – heater current leads; 3 – pressure sensor; 4 – gas supply line with nitrogen trap.

Baixar (270KB)
5. Fig. 4. TDS spectra of EK-181 steel samples kept in deuterium at a pressure of 5 atmospheres: thin lines – normal samples, thick lines – welded seam.

Baixar (41KB)
6. Fig. 5. Dependence of the amount of deuterium captured in the samples on the temperature at which the samples were kept in gaseous deuterium at a pressure of 5 atmospheres for 25 hours.

Baixar (15KB)
7. Fig. 6. Experimental and simulated TDS spectra of EK-181 steel samples held in D2 gas at 623, 673 and 723 K.

Baixar (49KB)
8. Fig. 7. The influence of near-surface traps on the shape of the model TDS spectrum.

Baixar (37KB)
9. Fig. 8. TDS spectra of deuterium simulated without an oxide layer on the sample. The red color shows the TDS spectrum with one trap of uniform concentration, the green color shows the TDS spectrum with the same uniform trap, but with a second near-surface trap added. The gray color shows the TDS spectra at different concentrations of the near-surface trap (from the maximum concentration (green) to zero concentration (red)).

Baixar (54KB)
10. Fig. 9. TDS spectrum with a “strong trap” (ST), without ST, and their sum. The sum of the TDS spectra shows that the narrow peak at ~1000 K cannot be described by simply adding ST to the modeling.

Baixar (59KB)