Electric arc synthesis of titanium carbide using carbon obtained from thermal conversion of waste from the power industry
- Autores: Svinukhova A.A.1, Yankovsky S.A.1, Misyukova A.D.1, Pak A.Y.1
-
Afiliações:
- National Research Tomsk Polytechnic Universityl
- Edição: Nº 3 (2024)
- Páginas: 49-58
- Seção: Articles
- URL: https://bulletin.ssaa.ru/0023-1177/article/view/677494
- DOI: https://doi.org/10.31857/S0023117724030073
- EDN: https://elibrary.ru/NBYDRG
- ID: 677494
Citar
Resumo
The work presents for the first time the results of obtaining titanium carbide using a vacuum-free electric arc method using various types of biocarbon obtained by classical pyrolysis of biomass waste, such as tangerine peel, pomelo peel, banana peel, pine nut shells, walnut shells. Analysis of X-ray diffraction patterns of the synthesized materials showed the repeatability of the experiment with the receipt of diffraction maxima indicating the formation of a cubic structure of titanium carbide. An analysis of the thermal oxidation of the resulting powders showed that up to a thousand degrees the process proceeds quite slowly, but with increasing temperature the oxidation rate increases significantly. It has been established that during thermal heating in an oxidizing environment, the mass of the studied titanium carbide powders obtained using various types of carbon increases, which is confirmed by thermogravimetric analysis.
Palavras-chave
Texto integral

Sobre autores
A. Svinukhova
National Research Tomsk Polytechnic Universityl
Autor responsável pela correspondência
Email: aag109@tpu.ru
Инженерная школа энергетики
Rússia, Tomsk, 634050S. Yankovsky
National Research Tomsk Polytechnic Universityl
Email: jankovsky@tpu.ru
Инженерная школа энергетики
Rússia, Tomsk, 634050A. Misyukova
National Research Tomsk Polytechnic Universityl
Email: adm14@tpu.ru
Инженерная школа энергетики
Rússia, Tomsk, 634050A. Pak
National Research Tomsk Polytechnic Universityl
Email: ayapak@tpu.ru
Инженерная школа энергетики
Rússia, Tomsk, 634050Bibliografia
- Gusev A.I. // Russian Chemical Reviews. 2020. V. 71. № 6. P. 439–463.https://doi.org/ 10.1070/rc2002v071n06abeh000721
- Syamsai R., Kollu P., Kwan Jeong S., and Nirmala Grace A. // Ceram. Int. 2017. V. 43. № 16. P. 13119–13126.https://doi.org/10.1016/J.CERAMINT.2017.07.003
- Luo Y., Yang C., Tian Y. et al. // J. Power Sources. 2020. V. 450. P. 227694.https://doi.org/10.1016/J.JPOWSOUR.2019.227694
- Dong Q., Huang M., Guo C., Yu G., and Wu M. // Int. J. Hydrogen Energy. 2017. V. 42. № 5. P. 3206–3214. https://doi.org/10.1016/J.IJHYDENE.2016.09.217
- Ghidiu M., Lukatskaya M.R., Zhao M.-Q., Gogotsi Y., and Barsoum M.W. // Nature. 2014. V. 516.https://doi.org/10.1038/nature13970
- Lin S.Y. and Zhang X. // J. Power Sources. 2015. V. 294. P. 354–359.https://doi.org/10.1016/J.JPOWSOUR.2015.06.082
- Ghosh S., Ranjan P., Kumaar A., Sarathi R., and Ramaprabhu S.// J Alloys Compd. 2019, vol. 794, p. 645–653.https://doi.org/10.1016/J.JALLCOM.2019.04.299
- Kunkel C., Viñ F., Ramírez P.J., Rodriguez J.A., and Illas F. // J. Phys. Chem. 2018. V. 123. P. 7567–7576.https://doi.org/10.1021/acs.jpcc.7b12227
- Amutio M., Lopez G., Aguado R., Bilbao J., and Olazar M. // Energy and Fuels. 2012. V. 26. № 2. P. 1353–1362. https://doi.org/10.1021/EF201662X
- Zhang Z., Li Yi., Luo L., et al. // Renew Energy. 2023. V. 202. P. 154–171.https://doi.org/10.1016/J.RENENE.2022.11.072
- Vuppaladadiyam A., Vuppaladadiyam S., Awasthi A. et al. // Bioresour Technol. 2022. V. 364.https://doi.org/10.1016/J.BIORTECH.2022.128087
- Blesa M.J., Miranda J.L., Moliner R., et al. // J. Anal. Appl. Pyrol. 2003. V. 70. № 2. P. 665–677.https://doi.org/10.1016/s0165-2370(03)00047-0
- Hilaluddin S., Mondal Sh. Rakhshit et al. // Bioresour Technol. 2023. V. 376.https://doi.org/ 10.1016/J.BIORTECH.2023.128910
- Tintner J., Preimesberger Ch., Pfeifer Ch. et al. // Ind. Eng. Chem. Res. 2018. V. 57. № 46. P. 15613–15619. https://doi.org/10.1021/acs.iecr.8b04094
- Zhang L., Li S., Li K., and Zhu X. // Energy Convers Manag. 2018, V. 166. P. 260–267.https://doi.org/ 10.1016/J.ENCONMAN.2018.04.002
- Singh S. and Srivastava S. // Procedia Comput. Sci. 2020. V. 173. P. 272–280.https://doi.org/ 10.1016/J.PROCS.2020.06.032
- Cheng J., Hu S.C., Sun G.T., Geng Z.C., and Zhu M.Q. // Ind. Crops Prod. 2021. V. 170. P. 113690.https://doi.org/10.1016/J.INDCROP.2021.113690
- Adelawon B.O., Latinwo G.K., Eboibi B.E., Agbede O.O., and Agarry S.E. // Chem. Eng. Comm. 2021. V. 209, № 9. P. 1246–1276.https://doi.org/10.1080/00986445.2021.1957851
- Yu S., Wang L., Li Q., Zhang Y., and Zhou H.// Materials Today Sustainability. 2022. V. 19. P. 100209.https://doi.org/ 10.1016/J.MTSUST.2022.100209
- Wang S., Dai G., Yang H., and Luo Z.// Prog. Energy Combust. Sci. 2017. V. 62. P. 33–86.https://doi.org/10.1016/J.PECS.2017.05.004
- Demirbaş A. and Arin G. // Enerdy Sources. 2010. V. 24. № 5. Р. 471–482.https://doi.org/ 10.1080/00908310252889979
- Cao Z., Hu Sh., Yu J., et al. // J. Environ. Chem. Eng. 2022. V. 10. № 5.https://doi.org/10.1016/J.JECE.2022.108245
- Sheldon R.A. // Green Chemistry. 2014. V. 16. № 3. Р. 950–963.https://doi.org/10.1039/C3GC41935E.
- Rosas J.M., Berenguer R., Valero-Romero M.J., Rodríguez-Mirasol J., Cordero T.// Front Mater. 2014. V. 1. https://doi.org/10.3389/fmats.2014.00029
- Rasaki S.A., Zhang B., Anbalgam K., Thomas T., and Yang M.// Progress in Solid State Chemistry. 2018. V. 50. P. 1–15.https://doi.org/ 10.1016/J.PROGSOLIDSTCHEM.2018.05.001
- Cho D., Hoon Park J., Jeong Y., and Lak Joo Y. // Ceram Int. 2015. V. 41. № 9. Р. 10974–10979.https://doi.org/ 10.1016/J.CERAMINT.2015.05.041
- De Bonis A., Santagata A., Galasso A., Laurita A., and Teghil R. // J. Colloid Interface Sci. 2017. V. 489. P. 76–84. https://doi.org/10.1016/j.jcis.2016.08.078
- Li J., Ye J. // Int. J. Refract Met. Hard. Mater. 2023. V. 115. № 106215.https://doi.org/10.1016/j.ijrmhm.2023.106215
- Zhang C., Loganathan A., Boesl B., Agarwal A. // Coatings. 2017. V. 7.https://doi.org/10.3390/coatings7080111
Arquivos suplementares
