О влиянии морфологии поверхности сажевых частиц на кинетику их роста. Молекулярно-динамическое исследование

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

По мере роста сажевая частица претерпевает ряд существенных морфологических изменений (называемых “старением”), которые приводят к снижению реакционной способности поверхности частицы. В данной статье с помощью метода реакционной молекулярной динамики исследуется взаимодействие между молекулами ацетилена, находящимися в газовой фазе, и поверхностью сажевых частиц различной степени зрелости. Продемонстрировано, что разветвленная морфология “молодых” сажевых частиц и наличие наноразмерных полостей на их поверхности может являться еще одним эффектом, оказывающим весомое влияние на более высокую реакционную способность сажевых частиц.

Об авторах

К. Д. Гольдштейн

Объединенный институт высоких температур РАН; Московский физико-технический институт

Email: nikita.orekhov@phystech.edu
Россия, Москва; Россия, Москва

М. А. Логунов

Объединенный институт высоких температур РАН; Московский физико-технический институт

Email: nikita.orekhov@phystech.edu
Россия, Москва; Россия, Москва

Д. О. Потапов

Объединенный институт высоких температур РАН; Московский физико-технический институт

Email: nikita.orekhov@phystech.edu
Россия, Москва; Россия, Москва

Н. Д. Орехов

Объединенный институт высоких температур РАН; Московский физико-технический институт; Московский государственный технический университет им. Н.Э. Баумана

Автор, ответственный за переписку.
Email: nikita.orekhov@phystech.edu
Россия, Москва; Россия, Москва; Россия, Москва

Список литературы

  1. Wang Y., Chung S.H. Soot Formation in Laminar Counterflow Flames // Prog. Energy Combust. Sci. 2019. V. 74. P. 152.
  2. Michelsen H.A., Colket M.B., Bengtsson P.-E. et al. A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions // ACS Nano. American Chemical Society. 2020. V. 14. № 10. P. 12470.
  3. Гуренцов Е.В., Еремин А.В., Михеева Е.Ю. Исследование термодинамических свойств углеродных наночастиц методом лазерного нагрева // ТВТ. 2017. Т. 55. № 5. С. 737.
  4. Liu P., Li Z., Roberts W.L. Growth Network of PAH with 5-membered Ring: Case Study with Acenaphthylene Molecule // Combust. Flame. 2021. V. 230. P. 111449.
  5. Veshkini A., Dworkin S.B., Thomson M.J. A Soot Particle Surface Reactivity Model Applied to a Wide Range of Laminar Ethylene/Air Flames // Combust. Flame. 2014. V. 161. № 12. P. 3191.
  6. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics // J. Comput. Phys. 1995. V. 117. № 1. P. 1.
  7. Kondratyuk N., Nikolskiy V., Pavlov D., Stegailov V. GPU-accelerated Molecular Dynamics: State-of-Art Software Performance and Porting from Nvidia CUDA to AMD HIP // Int. J. High Perform. Comput. Appl. 2021. V. 35. № 4. P. 312.
  8. Chenoweth K., van Duin A.C.T., Goddard W.A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation // J. Phys. Chem. A. 2008. V. 112. № 5. P. 1040.
  9. Nosé S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble // Mol. Phys. 1984. V. 52. № 2. P. 255.
  10. Carla de Tomas C., Aghajamali A., Jones J.L. et al. Transferability in Interatomic Potentials for Carbon // Carbon. 2019. V. 155. P. 624.
  11. Carla de Tomas C., Suarez-Martinez I., Marks N.A. Graphitization of Amorphous Carbons: A Comparative Study of Interatomic Potentials // Carbon. 2016. V. 109. P. 681.
  12. Orekhov N.D., Stegailov V.V. Graphite Melting: Atomistic Kinetics Bridges Theory and Experiment // Carbon. 2015. V. 87. P. 358.
  13. Rowe P., Deringer V.L., Gasparotto P. et al. An Accurate and Transferable Machine Learning Potential for Carbon // J. Chem. Phys. 2020. V. 153. № 3. P. 034702.
  14. Nguyen-Cong K., Bonilla M., Kolekar S. et al. Billion Atom Molecular Dynamics Simulations of Carbon at Extreme Conditions and Experimental Time and Length Scales // Proc. Int. Conf. for High Performance Computing, Networking, Storage and Analysis. St. Louis, 2021. P. 1.
  15. Orekhov N., Logunov M. Atomistic Structure and Anomalous Heat Capacity of Low-density Liquid Carbon: Molecular Dynamics Study with Machine Learning Potential // Carbon. 2022. V. 192. P. 179.
  16. Orekhov N., Ostroumova G., Stegailov V. High Temperature Pure Carbon Nanoparticle Formation: Validation of AIREBO and ReaxFF Reactive Molecular Dyna-mics // Carbon. 2020. V. 170. P. 606.
  17. Ashraf C., van Duin A.C.T. Extension of the ReaxFF Combustion Force Field Toward Syngas Combustion and Initial Oxidation Kinetics // J. Phys. Chem. A. 2017. V. 121. № 5. P. 1051.
  18. Orekhov N.D., Bondareva J.V., Potapov D.O. et al. Mechanism of Graphene Oxide Laser Reduction at Ambient Conditions: Experimental and ReaxFF Study // Carbon. 2022. V. 191. P. 546.
  19. Goldshtein K.D., Potapov D.O., Shadymov V.A. et al. Molecular Dynamics Analysis of Incipient Soot Morphology // J. Phys.: Conf. Ser. 2021. V. 1787. № 1. 012044.
  20. Pakhnova M., Kruglov I., Yanilkin A. et al. Search for Stable Cocrystals of Energetic Materials Using the Evolutionary Algorithm Uspex // Phys. Chem. Chem. Phys. 2020. V. 22. № 29. P. 16822.
  21. Matsko N.L., Kruglov I.A. Plasmon–Polariton Modes in Fullerenes // J. Phys. Chem. Lett. 2021. V. 12. № 49. P. 11873.
  22. Popov Z.I., Sukhanova E.V., Kvashnin D.G. Metallocene Inspired 2D Metal Intercalated Carbon Allotropes: Stability and Properties via DFT Calculations // Carbon. 2021. V. 184. P. 714.
  23. Grebenko A.K., Krasnikov D.V., Bubis A.V. et al. High-Quality Graphene Using Boudouard Reaction // Adv. Sci. 2022. V. 9. P. 2200217.
  24. Zhukov S.S., Balos V., Hoffman G. et al. Rotational Coherence of Encapsulated Ortho and Para Water in Fullerene-C60 Revealed by Time-domain Terahertz Spectroscopy // Sci. Rep. 2020. V. 10. № 1. P. 1.
  25. Басевич В.Я., Медведев С.Н., Фролов С.М. и др. Макрокинетическая модель для расчета эмиссии сажи в дизеле // Горение и взрыв. 2016. Т. 9. № 3. С. 36.
  26. Agafonov G.L., Bilera I.V., Vlasov P.A. et al. Unified Kinetic Model of Soot Formation in the Pyrolysis and Oxidation of Aliphatic and Aromatic Hydrocarbons in Shock Waves // Kinet. Catal. 2016. V. 57. № 5. P. 557.
  27. Власов П.А., Варнатц Ю. Кинетическое моделирование сажеобразования при пиролизе различных алифатических и ароматических углеводородов в ударных волнах // Хим. физика. 2004. Т. 23. № 10. С. 39.
  28. Schuetz C.A., Frenklach M. Nucleation of Soot: Molecular Dynamics Simulations of Pyrene Dimerization // Proc. Combust. Inst. 2002. V. 29. № 2. P. 2307.
  29. Chakraborty D., Lischka H., Hase W.L. Dynamics of Pyrene-Dimer Association and Ensuing Pyrene-Dimer Dissociation // J. Phys. Chem. A. 2020. V. 124. № 43. P. 8907.
  30. Iavarone S., Pascazio L., Sirignano M. et al. Molecular Dynamics Simulations of Incipient Carbonaceous Nanoparticle Formation at Flame Conditions // Combust. Theory Model. 2017. V. 21. № 1. P. 49.
  31. Mao Q., Hou D., Luo K.H. et al. Dimerization of Polycyclic Aromatic Hydrocarbon Molecules and Radicals under Flame Conditions // J. Phys. Chem. A. ACS. 2018. V. 122. № 44. P. 8701.
  32. Grančič P., Martin J.W., Chen D. et al. Can Nascent Soot Particles Burn from the Inside? // Carbon. 2016. V. 109. P. 608.
  33. Chen D., Totton T.S., Akroyd J. et al. Phase Change of Polycyclic Aromatic Hydrocarbon Clusters by Mass Addition // Carbon. 2014. V. 77. P. 25.
  34. Thomson M., Mitra T. A Radical Approach to Soot Formation // Science. 2018. V. 361. P. 978.
  35. Johansson K.O., Head-Gordon M.P., Schrader P.E. et al. Resonance-stabilized Hydrocarbon-radical Chain Reactions May Explain Soot Inception and Growth // Science. 2018. V. 361. P. 997.
  36. Commodo M., Kaiser K., De Falco G. et al. On the Early Stages of Soot Formation: Molecular Structure Elucidation by High-resolution Atomic Force Microscopy // Combust. Flame. 2019. V. 205. P. 154.
  37. Gleason K., Carbone F., Sumner A.J. et al. Small Aromatic Hydrocarbons Control the Onset of Soot Nucleation // Combust. Flame. 2021. V. 223. P. 398.
  38. Zhang C., Zhang C., Ma Y., Xue X. Imaging the C Black Formation by Acetylene Pyrolysis with Molecular Reactive Force Field Simulations // Phys. Chem. Chem. Phys. 2015. V. 17. № 17. P. 11469.
  39. Sharma A., Mukut K.M., Roy S.P. et al. The Coalescence of Incipient Soot Clusters // Carbon. 2021. V. 180. P. 215.
  40. Lümmen N. ReaxFF-molecular Dynamics Simulations of Non-oxidative and Non-catalyzed Thermal Decomposition of Methane at High Temperatures // Phys. Chem. Chem. Phys. 2010. V. 12. № 28. P. 7883.
  41. Liu L., Xu H., Zhu Q. et al. Soot Formation of n-decane Pyrolysis: A Mechanistic View from ReaxFF Molecular Dynamics Simulation // Chem. Phys. Lett. 2020. V. 760. P. 137983.
  42. Mao Q., van Duin A.C.T., Luo K.H. Formation of Inci-pient Soot Particles from Polycyclic Aromatic Hydrocarbons: A ReaxFF Molecular Dynamics Study // Carbon. 2017. V. 121. P. 380.
  43. Michelsen H.A. Effects of Maturity and Temperature on Soot Density and Specific Heat // Proc. Combust. Inst. 2021. V. 38. № 1. P. 1197.
  44. Гуренцов Е.В., Дракон А.В., Еремин А.В. и др. Зависимость температуры сублимации образующихся в пламенах сажевых частиц от их размеров и структуры // ЖТФ. 2022. Т. 92. № 1. С. 76.
  45. Ouf F.-X., Bourrous S., Fauvel S. et al. True Density of Combustion Emitted Particles: A Comparison of Results Highlighting the Influence of the Organic Contents // J. Aerosol Sci. 2019. V. 134. P. 1.
  46. Potapov D., Orekhov N. Mechanisms of Soot Thermal Decomposition: Reactive Molecular Dynamics Study // Combust. Flame. 2023. V. 249. P. 112596.
  47. Grommet A.B., Feller M., Klajn R. Chemical Reactivity under Nanoconfinement // Nat. Nanotechnol. 2020. V. 15. № 4. P. 256.

Дополнительные файлы


© К.Д. Гольдштейн, М.А. Логунов, Д.О. Потапов, Н.Д. Орехов, 2023