Human Health, Environmental Comfort and Well-Being. Part 1. Engineering and Design Resources of the Bioindustry on the Way to Safe Competition with the Resources of Natural Biocenoses and Health-Saving Systems

Cover Page

Cite item

Full Text

Abstract

Everyone has the right to the highest attainable standard of health, and modern preventive, preventive and rehabilitative manipulations promote health and well-being. Thanks to a number of fundamental projects on the study of human health at various levels (genomic, proteomic, and metabolomic), and molecular mechanisms of the development of pathological conditions, there has been a great leap in the field of applied sectors of industrial biotechnology, including segments of the pharmaceutical and food industries, significantly replenished health-saving resources and improved the quality of life of the population. This article will review the advanced achievements of fundamental and applied research, as well as promising areas of the bioindustry.

Full Text

Restricted Access

About the authors

S. V. Suchkov

Russian Academy of Natural Sciences; Russian University of Medicine; New York Academy of Sciences; University of World Politics and Law

Author for correspondence.
Email: med_nika2000@mail.ru

Department of Clinical Allergology and Immunology

Russian Federation, Moscow; Moscow; New York, USA; Moscow

H. Abe

Abe Cancer Clinic

Email: med_nika2000@mail.ru
Japan, Tokyo

S. Murphy

Massachusetts General Hospital (MGH); Harvard Medical School

Email: med_nika2000@mail.ru
United States, Boston, MA; Boston, MA

D. Smith

Mayo Clinic

Email: med_nika2000@mail.ru
United States, Rochester, MN

V. S. Polyakova

University of World Politics and Law

Email: med_nika2000@mail.ru
Russian Federation, Moscow

D. Scherman

European Academy of Sciences; National Center for Scientific Research (CNRS); Paris Descartes University

Email: med_nika2000@mail.ru

Unité de Pharmacologie Chimique et Génétique d’Imagerie

Belgium, Liège; Paris, France; Paris, France

A. P. Glinushkin

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: med_nika2000@mail.ru
Russian Federation, Moscow

P. Barach

Wayne State University, School of Medicine

Email: mbikeeva@yandex.ru
United States, Detroit, MI

A. O. Terentʼev

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: mbikeeva@yandex.ru
Russian Federation, Moscow

M. Tan

NAKADA Geriatric Health and Welfare Facilities

Email: mbikeeva@yandex.ru
Japan, Nakada Tome Miyagi

A. N. Suvorov

Institute of Experimental Medicine, Russian Academy of Sciences; St. Petersburg State University

Email: mbikeeva@yandex.ru

Department of Microbiology

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Основы персонализированной и прецизионной медицины / Ред. С.В. Сучков. М.: ГЭОТАР-Медиа, 2020. 624 с.
  2. Секачева Е.Г., Большакова О.В., Бондаренко В.В. Применение методов клеточной и генной инженерии в биологии и медицине // Синергия Наук. 2018. № 23. С. 980–992.
  3. Arslan F.1., Lai R.C., Smeets M.B. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury // Stem Cell Res. 2013. V. 10 (3). P. 301–312. https://doi.org/10.1016/j.scr.2013.01.002
  4. Bailey R.M., Rozenberg A., Gray S.J. Comparison of high-dose intracisterna magna and lumbar puncture intrathecal delivery of AAV9 in mice to treat neuropathies // Brain Res. 2020. V. 1739. P. 146832. https://doi.org/10.1016/j.brainres.2020.146832
  5. Balashova E.E., Trifonova O.P., Maslov D.L. et al. Metabolomnoe profilirovanie v izuchenii protsessov stareniia [Metabolome profiling in the study of aging processes] // Biomed. Khim. 2022. V. 68 (5). P. 321–338. https://doi.org/10.18097/PBMC20226805321
  6. Bashor C.J., Hilton I.B., Bandukwala H. et al. Engineering the next generation of cell-based therapeutics // Nat. Rev. Drug Discov. 2022. V. 21. P. 655–675.
  7. Basler G., Fernie A.R., Nikoloski Z. Advances in metabolic flux analysis toward genome-scale profiling of higher organisms // Biosci. Rep. 2018. V. 38 (6). P. BSR20170224. https://doi.org/10.1042/BSR20170224
  8. Beckonert O., Keun H., Ebbels T. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts // Nat. Protoc. 2007. V. 2. P. 2692–2703.
  9. Bodrova T.A., Kostyushev D.S., Antonova E.N. et al. Introduction into PPPM as a new paradigm of public health service: an integrative view // EPMA J. 2012. V. 3 (1). P. 16.
  10. Bollini S., Smart N., Riley P.R. Resident cardiac progenitor cells: at the heart of regeneration // J. Mol. Cell Cardiol. 2011. V. 50 (2). P. 296–303. https://doi.org/10.1016/j.yjmcc.2010.07.006
  11. Chappell C.R., Perez R., Takara C.O. Growing biodesign ecosystems: community exchange spaces advance biotechnology innovation // Res. Direct. Biotechnol. Design. 2023. V. 1. P. e13. https://doi.org/10.1017/btd.2023.8
  12. Carrillo-Rodriguez P., Selheim F., Hernandez-Valladares M. Mass spectrometry-based proteomics workflows in cancer research: the relevance of choosing the right steps // Cancers (Basel). 2023. V. 15 (2). P. 555. https://doi.org/10.3390/cancers15020555
  13. Castelli F.A., Rosati G., Moguet C. et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests // Anal. Bioanal. Chem. 2022. V. 414 (2). P. 759–789. https://doi.org/10.1007/s00216-021-03586-z
  14. Clarke C.J., Haselden J.N. Metabolic profiling as a tool for understanding mechanisms of toxicity // Toxicol. Pathol. 2008. V. 36 (1). P. 140–147.
  15. Cui H., Miao S., Esworthy T. et al. 3D bioprinting for cardiovascular regeneration and pharmacology // Adv. Drug. Deliv. Rev. 2018. V. 132. P. 252–269. https://doi.org/10.1016/j.addr.2018.07.014
  16. Dang D.K., Park B.H. Circulating tumor DNA: current challenges for clinical utility // J. Clin. Invest. 2022. V. 132 (12). P. e154941. https://doi.org/10.1172/JCI154941
  17. Dietrich E., Antoniades K. Molecularly targeted drugs for the treatment of cancer: oral complications and pathophysiology // Hippokratia. 2012. V. 16 (3). P. 196–199.
  18. Dromms R.A., Styczynski M.P. Systematic applications of metabolomics in metabolic engineering // Metabolites. 2012. V. 2 (4). P. 1090–1122.
  19. Ellis J.K., Athersuch T.J., Thomas L.D. et al. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population // BMC Med. 2012. V. 10. P. 61.
  20. Ellison G.M., Vicinanza C., Smith A.J. et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair // Cell. 2013. V. 154 (4). P. 827–842. https://doi.org/10.1016/j.cell.2013.07.039
  21. Fodor W.L. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate // Reprod. Biol. Endocrinol. 2003. V. 1. P. 102.
  22. Gu W., Hasan S., Rocca-Serra P., Satagopam V.P. Road to effective data curation for translational research // Drug Discov. Today. 2021. V. 26 (3). P. 626–630. https://doi.org/10.1016/j.drudis.2020.12.007
  23. Hulke M.L., Massey D.J., Koren A. Genomic methods for measuring DNA replication dynamics // Chromosome Res. 2020. V. 28 (1). P. 49–67. https://doi.org/10.1007/s10577-019-09624-y
  24. Irvine D.J., Maus M.V., Mooney D.J., Wong W.W. The future of engineered immune cell therapies // Science. 2022. V. 378 (6622). P. 853–858. https://doi.org/10.1126/science.abq6990
  25. Jiang S., Liberti L., Lebo D. Direct-to-consumer genetic testing: a comprehensive review // Ther. Innov. Reg. Sci. 2023. V. 57 (6). P. 1190–1198.
  26. Kantor A., McClements M.E., MacLaren R.E. CRISPR-Cas9 DNA base-editing and prime-editing // Int. J. Mol. Sci. 2020. V. 21 (17). P. 6240. https://doi.org/10.3390/ijms21176240
  27. Kapoor S., Rafiq A., Sharma S. Protein engineering and its applications in food industry // Crit. Rev. Food Sci. Nutr. 2017. V. 57 (11). P. 2321–2329. https://doi.org/10.1080/10408398.2014.1000481
  28. Khanijou J.K., Kulyk H., Bergès C. et al. Metabolomics and modelling approaches for systems metabolic engineering // Metab. Eng. Commun. 2022. V. 15. P. e00209.
  29. King R.S., Newmark P.A. The cell biology of regeneration // J. Cell Biol. 2012. V. 196 (5). P. 553–562. https://doi.org/10.1083/jcb.201105099
  30. Liang K., Du Y. Cell engineering techniques improve pharmacology of cellular therapeutics // Biomater. Biosyst. 2021. V. 2. 100016.
  31. Lizak N., Malpas C.B., Sharmin S. et al. Association of sustained immunotherapy with disability outcomes in patients with active secondary progressive multiple sclerosis // JAMA Neurol. 2020. V. 77 (11). P. 1398.
  32. Lutz S., Iamurri S.M. Protein engineering: past, present, and future // Meth. Mol. Biol. 2018. V. 1685. P. 1–12. https://doi.org/10.1007/978-1-4939-7366-8_1
  33. Ma L., Yang H. What’s next toward the bio-design and manufacturing field? // Bio-Des. Manuf. 2023. V. 6. P. 735–741. https://doi.org/10.1007/s42242-023-00260-4
  34. Mann S.P., Treit P.V., Geyer P.E. et al. Ethical principles, constraints and opportunities in clinical proteomics // Mol. Cell Proteom. 2021. V. 20. P. 100046. https://doi.org/10.1016/j.mcpro.2021.100046
  35. Medvedeva V., Sorenson E.J., Studneva M. et al. The autoimmune syndrome through the prism of targeted AT-mediated proteolysis: innovative ideas, philosophy, and tools for practitioners of the next step generation // Am. J. Biomed. Sci. Res. 2022a. V. 15 (3). P. 319–327.
  36. Medvedeva V., Rose N., Miller A. D. et al. The editorials: towards integrated biodesign-related and translational platforms to determine co-development for adaptation of innovative biotechnologies and to prognosticate the future of the healthcare and life science bioindustry // British J. Health. Med. Res. 2022b. V. 9 (4). 271–281.
  37. Mendell J.R., Al-Zaidy S., Shell R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy // N. Engl. J. Med. 2017 V. 377 (18). P. 1713–1722. https://doi.org/10.1056/NEJMoa1706198. PMID: 29091557
  38. Mitsuishi M., Cao J., Bártolo P. et al. Biomanufacturing // CIRP Ann. 2013. V. 62 (2). P. 585–606.
  39. Neely B.A., Dorfer V., Martens L. et al. Toward an integrated machine learning model of a proteomics experiment // J. Prot. Res. 2023. V. 22 (3). P. 681–696. https://doi.org/10.1021/acs.jproteome.2c00711
  40. Oh B. Direct-to-consumer genetic testing: advantages and pitfalls // Genom. Inform. 2019. V. 17 (3). P. e33. https://doi.org/10.5808/GI.2019.17.3.e33
  41. Perin E., Borow K., Henry T. et al. Randomized trial of targeted transendocardial mesenchymal precursor cell therapy in patients with heart failure // J. Am. Coll. Cardiol. 2023. V. 81 (9). P. 849–863. https://doi.org/10.1016/j.jacc.2022.11.061
  42. Santos A., Colaço A.R., Nielsen A.B. et al. A knowledge graph to interpret clinical proteomics data // Nat. Biotechnol. 2022. V. 40 (5). P. 692–702. https://doi.org/10.1038/s41587-021-01145-6
  43. Saw P.E., Song E.W. Phage display screening of therapeutic peptide for cancer targeting and therapy // Prot. Cell. 2019. V. 10 (11). P. 787–807. https://doi.org/10.1007/s13238-019-0639-7
  44. Shah S.H., Kraus W.E., Newgard C.B. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function // Circulation. 2012. V. 126 (9). P. 1110–1120.
  45. Shuel S.L. Targeted cancer therapies: clinical pearls for primary care // Can. Fam. Physician. 2022. V. 68 (7). P. 515–518.
  46. Simons M., Raposo G. Exosomes – vesicular carriers for intercellular communication // Curr. Opin. Cell Biol. 2009. V. 21 (4). P. 575–581.
  47. Singh R.K., Lee J.K., Selvaraj C. et al. Protein engineering approaches in the post-genomic era // Curr. Prot. Pept. Sci. 2018. V. 19 (1). P. 5–15. https://doi.org/10.2174/1389203718666161117114243
  48. Smith R.R., Lucio Barile L., Cho H.C. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens // Circulation. 2007. V. 115 (7). P. 896–908. https://doi.org/10.1161/CIRCULATIONAHA.106.655209
  49. Sterner R.C., Sterner R.M. CAR-T cell therapy: current limitations and potential strategies // Blood Cancer J. 2021. V. 11 (4). P. 69. https://doi.org/10.1038/s41408-021-00459-7
  50. Studneva M., Rose N., Gabibov A. et al. A new generation of translational tools designed to monitor multiple sclerosis (MS) at clinical and subclinical stages // Med. Med. Sci. 2021. V. 1 (5). P. 55–63.
  51. Suchkov S., Murphy S., Smith D., et al. Perspective: personalized and precision medicine (PPM) hold the hi-tech future for healthcare via biodesign to secure the human healthcare and biosafety // World J. Mol. Med. 2024a. V. 1 (1). P. 1–9.
  52. Suchkov S., Scherman D., Bonifazi D. et al. Personalized and precision medicine (PPM) as a unique healthcare model of the next step generation: the role of a nurses and nursing practice in transdisciplinary care team: the future of nursing services // J. Med. Clin. Nurs. Stud. 2024b. V. 1 (1). P. 1–13.
  53. Volk M.J., Tran V.G., Tan S.I. et al. Metabolic engineering: methodologies and applications // Chem. Rev. 2023. V. 123 (9). P. 5521–5570. https://doi.org/10.1021/acs.chemrev.2c00403
  54. Wang S.W., Gao C., Zheng Y.M. et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer // Mol. Cancer. 2022. V. 21 (1). P. 57. https://doi.org/10.1186/s12943-022-01518-8
  55. Xu Y., Ritchie S.C., Liang Y. et al. An atlas of genetic scores to predict multi-omic traits // Nature. 2023. V. 616 (7955). P. 123–131. https://doi.org/10.1038/s41586-023-05844-9
  56. Yang S., Zhu Z., Chen S. et al. Metabolic fingerprinting on retinal pigment epithelium thickness for individualized risk stratification of type 2 diabetes mellitus // Nat. Comm. 2023. V. 14 (1). P. 6573. https://doi.org/10.1038/s41467-023-42404-1
  57. Yang K.K., Wu Z., Arnold F.H. Machine-learning-guided directed evolution for protein engineering // Nat. Methods. 2019. V. 16 (8). P. 687–694. https://doi.org/10.1038/s41592-019-0496-6
  58. Zhang C., Quan R., Wang J. Development and application of CRISPR/Cas9 technologies in genomic editing // Hum. Mol. Genet. 2018. V. 27 (R2). P. R79–R88. https://doi.org/10.1093/hmg/ddy120
  59. Zhang P., Wu W., Chen Q., Chen M. Non-coding RNAs and their integrated networks // J. Integr. Bioinform. 2019. V. 16 (3). P. 20190027. https://doi.org/10.1515/jib-2019-0027
  60. Zhao N., Song Y., Xie X. et al. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development // Signal Transduct. Target Ther. 2023. V. 8 (1). P. 112. https://doi.org/10.1038/s41392-023-01375-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bioindustry and its branches.

Download (173KB)
3. 2. Modern scheme of functional architecture of personalized and precision medicine.

Download (145KB)
4. 3. Key sectors of the bioindustry.

Download (222KB)
5. 4. Biodesign and its basic infrastructure.

Download (378KB)
6. 5. Sectoral architectonics of modern industrial biotechnology. Industrial biotechnology combines chemistry, molecular and microbiology with applied sciences for the use of microorganisms, cells, tissues and genes in order to carry out technological processes of various directions. This field of research is one of the most promising today and allows not only to change and improve the characteristics of substances, but also to create new microorganisms with unique functions.

Download (144KB)
7. Fig. 6. OMIX technologies and their resources.

Download (214KB)
8. 7. Categories of biomarkers (a); principles of targeted therapy through the prism of receptors, biomarkers and targeted drugs (b).

Download (479KB)
9. 8. Systems of targeted delivery of genetic material to the target cell. To date, two types of gene therapy have been formed.: An individualized ex vivo approach is transfection of hematopoietic stem cells obtained from peripheral blood and then transplanted to the patient, and in vivo transfection of cells inside the body, where the genetic material in the vector is delivered as a result of injections.

Download (115KB)
10. Fig. 9. Principles of application of the engineering and design package Prime Editing Design Tool for genomic editing. The new approach to genomic editing allows for any single-nucleotide substitutions and larger insertions and deletions, but differs from the classic CRISPR/Cas9 editing by being more accurate. This became possible due to the fact that the new editor dispenses with double-stranded DNA cuts and completes the edited chain on its own. As a result, the number of errors is lower and the efficiency is higher.

Download (177KB)
11. Fig. 10. Basic tools of proteomics.

Download (159KB)
12. 11. Protein engineering: modern methods and approaches.

Download (291KB)
13. 12. Strategic technological platforms and methods in metabolic research and expertise. As a biomarker detection tool, the integrated holistic approach of metabolomics may lead to new diagnostic or therapeutic methods. The detection of metabolites using high-performance systems supported by advanced bioinformatics and network analysis has made it possible to identify potential biomarkers and therapeutic targets.

Download (108KB)
14. 13. The metabolome as the end product of a multi-stage process of realization of genetic information in the cell. The realization of hereditary information in a living organism is carried out from DNA to RNA, from RNA to protein, and from protein to metabolic cascades and metabolites. Accordingly, there is a hierarchy of disciplines, starting from genomics, following to transcriptomics and proteomics, and ending with metabolomics – the set of all metabolites formed as a result of biochemical reactions.

Download (237KB)
15. Figure 14. Diagram of the influence of various processes on metabolism and the possibility of using metabolites as biomarkers within the framework of BPM. Metabolomic approaches make it possible to identify the principles of drug resistance formation and factors of tumor recurrence, and to identify new promising therapy targets.

Download (181KB)
16. 15. Mesenchymal stem cells (MSCs). MSCs are non-hematopoietic, multipotent, self-renewing cells capable of trilinear differentiation (mesoderm, ectoderm, and endoderm). The pluripotency and immunomodulatory properties of MSCs allow them to be considered an effective tool in cell therapy and tissue repair.

Download (116KB)
17. Рис. 16. CAR-Т-клеточная терапия с использованием инструментов клеточной и генной инженерии. При CAR-T-клеточной терапии Т-клетки берутся у пациентов для генетической модификации и оснащаются химерными антигенными рецепторами (CAR). Каждый CAR состоит из нескольких строительных блоков, которые могут распознавать и связываться с соответствующей целевой молекулой на поверхности опухолевых клеток. После активации CAR-T-клетки начинают уничтожение раковой клетки посредством цитотоксического (повреждающего клетки) эффекта. В то же время CAR-T-клетки размножаются, поэтому они остаются в организме и могут активно действовать при рецидиве заболевания.

Download (196KB)
18. 17. Glucose-stimulated beta cells that produce insulin and are protected inside capsules to be invisible to the host's immune system. There is no doubt that the ability to generate glucose-sensitive human beta cells through controlled stem cell differentiation will accelerate the development of new therapeutic agents.

Download (99KB)
19. Fig. 18. Advances in cellular bioengineering and bioprinting: (a) – printed thyroid gland; (b) – printed liver; (c) – printed heart.

Download (207KB)

Copyright (c) 2024 Russian Academy of Sciences