Субсолидусные фазовые равновесия в системах Ni–Mn–Ga–Sb и Ni–Mn–In–Sb
- Авторы: Смирнова М.Н.1, Бузанов Г.А.1, Нипан Г.Д.1, Пашкова О.Н.1, Никифорова Г.Е.1
-
Учреждения:
- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Выпуск: Том 70, № 6 (2025)
- Страницы: 829-835
- Раздел: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://bulletin.ssaa.ru/0044-457X/article/view/686419
- DOI: https://doi.org/10.31857/S0044457X25060119
- EDN: https://elibrary.ru/ICEMKU
- ID: 686419
Цитировать
Аннотация
Проведен анализ фазовых равновесий в системах Ni–Mn–Ga–Sb и Ni–Mn–In–Sb при отсутствии расплава. Методом топологического моделирования на основе концентрационных диаграмм тройных систем Ni–Mn–Sb, Ni–Mn–Ga, Ni–Mn–In, Ni–Ga–Sb, Ni–In–Sb, Mn–Ga–Sb, Mn–In–Sb и фрагментарных экспериментальных данных о фазовых равновесиях с участием интерметаллидов Гейслера Ni2Mn1+x(Ga,Sb)1−x и Ni2Mn1+x(In,Sb)1−x построены изобарно-изотермические субсолидусные концентрационные диаграммы четверных систем Ni–Mn–Ga–Sb и Ni–Mn–In–Sb. Показаны их основные отличия.
Ключевые слова
Полный текст

Об авторах
М. Н. Смирнова
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Автор, ответственный за переписку.
Email: smirnovamn@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991
Г. А. Бузанов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: smirnovamn@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991
Г. Д. Нипан
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: smirnovamn@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991
О. Н. Пашкова
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: smirnovamn@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991
Г. Е. Никифорова
Институт общей и неорганической химии им. Н.С. Курнакова РАН
Email: smirnovamn@igic.ras.ru
Россия, Ленинский пр-т, 31, Москва, 119991
Список литературы
- Tian F., Zeng Y., Xu M. et al. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 012406. https://doi.org/10.1063/1.4926411
- Tian F., Cao K., Zhang Y. et al. // Sci. Rep. 2016. V. 6. P. 30801. https://doi.org/10.1038/srep30801
- Liu Z.H., Askoy S., Acet M. // J. Appl. Phys. 2009. V. 105. № 3. Р. 033913. https://doi.org/10.1063/1.3075821
- Liu Z., Wu Z., Yang H. et al. // Intermetallics. 2010. V. 18. № 8. P. 1690. https://doi.org/ 10.1016/j.intermet.2010.05.007
- Yu S.Y., Yan S.S., Zhao L. et al. // J. Magn. Magn. Mater. 2010. V. 322. № 17. P. 2541. https://doi.org/10.1016/j.jmmm.2010.03.017
- Yu S.Y., Wei J.J., Kang S.S. et al. // J. Alloys Compd. 2014. V. 586. P. 328. https://doi.org/10.1016/j.jallcom.2013.10.072
- Liu H., Liu Z., Li G., Ma X. // Solid State Commun. 2016. V. 243. P. 23. https://doi.org/10.1016/j.ssc.2016.06.005
- Zhang Y., Wang J., Ke X. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. № 27. P. 18484. https://doi.org/10.1039/C8CP02720J
- Tian F., Cao K., Chen K. et al. // J. Appl. Phys. 2024. V. 135. Р. 023904. https://doi.org/10.1063/5.0189339
- Krenke T., Acet M., Wassermann E.F. et al. // Phys. Rev. B. 2006. V. 73. Р. 174413. https://doi.org/10.1103/PhysRevB.73.174413
- Guo C., Du Z. // Intermetallics. 2005. V. 13. № 5. P. 525. https://doi.org/10.1016/j.intermet.2004.09.002
- Franke P. // Int. J. Mater. Res. 2007. V. 98. № 10. P. 954. https://doi.org/10.3139/146.101558
- Hao L., Bigdeli S., Xiong W. // J. Phase Equilib. Diff. 2024. V. 45. № 6. P. 1182. https://doi.org/10.1007/s11669-024-01165-0
- Zhang Y., Li C., Du Z., Guo C. // CALPHAD. 2008. V. 32. № 2. P. 378. https://doi.org/10.1016/j.calphad.2008.02.001
- Cao Z., Takaku Y., Ohnuma I. et al. // Rare Met. 2008. V. 27. № 4. P. 384. https://doi.org/10.1016/s1001-0521(08)60150-3
- Okamoto H. // J. Phase Equilib. Diff. 2009. V. 30. № 3. P. 301. https://doi.org/10.1007/s11669-009-9513-2
- Kainzbauer P., Richter K.W., Ipser H. // J. Phase Equilib. 2016. V. 37. № 4. P. 459. https://doi.org/10.1007/s11669-016-0470-2
- Yuan W.X., Qiao Z.Y., Ipser H., Eriksson G. // J. Phase Equilib. 2004. V. 25. № 1. P. 68. https://doi.org/10.1361/10549710417696
- Okamoto H. // J. Phase Equilib. 2010. V. 31. № 6. P. 575. https://doi.org/10.1007/s11669-010-9785-6
- Cao Z-M., Shi X., Xie W. et al. // Rare Met. 2015. V. 34. № 12. P. 864. https://doi.org/10.1007/s12598-014-0365-5
- Chang C.-C. B., Kao C.R. // Materials. 2024. V. 17. P. 883. https://doi.org/10.3390/ma17040883
- Hao L., Shen C., Fortunato N.M. et al. // CALPHAD. 2025. V. 88. P. 102797. https://doi.org/10.1016/j.calphad.2024.102797
- Okamoto H. // J. Phase Equilib. 2003. V. 24. № 4. P. 379. https://doi.org/10.1361/105497103770330479
- Minakuchi K., Umetsu R.Y., Ishida K., Kainuma R. // J. Alloys. Compd. 2012. V. 537. P. 332. https://doi.org/10.1016/j.jallcom.2012.04.065
- Tillard M., Belin C. // Intermetallics. 2012. V. 29. P. 147. https://doi.org/10.1016/j.intermet.2012.05.011
- Okamoto H. // J. Phase Equilib. Diff. 2014. V. 35. № 1. P. 105. https://doi.org/10.1007/s11669-013-0262-x
- Hao L., Xiong W. // CALPHAD. 2020. V. 68. P. 101722. https://doi.org/10.1016/j.calphad.2019.101722
- Wang L.Y., Wang J., Zhu C.F. et al. // Thermochim. Acta. 2015. V. 607. P. 74. https://doi.org/10.1016/j.tca.2015.03.022
- Srinivaas M.R., Kumar K.C.H. // CALPHAD. 2022. V. 76. P. 102389. https://doi.org/10.1016/j.calphad.2021.102389
- Lysenko V.A. // J. Alloys. Compd. 2019. V. 776. P. 850. https://doi.org/10.1016/j.jallcom.2018.10.223
- Miyamoto T., Nagasako M., Kainuma R. // J. Alloys Compd. 2019. V. 772. P. 64. https://doi.org/10.1016/j.jallcom.2018.09.035
- Ao W.-Q., Yu H.-Z., Liu F.-L. et al. // J. Min. Metall., Sect. B: Metall. 2019. V. 55. № 2. P. 147. https://doi.org/10.2298/JMMB181104019A
- Wedel C., Itagaki K. // J. Phase Equilib. 2001. V. 22. № 3. P. 324. https://doi.org/10.1361/105497101770338833
- Gupta K.P. // J. Phase Equilib. Diff. 2001. V. 29. № 1. P. 101. https://doi.org/10.1007/s11669-007-9017-x
- Yang S., Wang C., Liu X. // Intermetallics. 2012. V. 25. P. 101. https://doi.org/10.1016/j.intermet.2011.12.009
- Tiwari N., Pal V., Das S., Paliwal M. // J. Electron. Mater. 2024. V. 53. № 4. P. 1773. https://doi.org/10.1007/s11664-023-10882-0
- Miyamoto T., Nagasako M., Kainuma R. // J. Alloys. Compd. 2013. V. 549. P. 57. https://doi.org/10.1016/j.jallcom.2012.08.128
- Le Clanche M.C., Députier S., Jégaden J.C. et al. // J. Alloys Compd. 1994. V. 206. P. 21. https://doi.org/10.1016/0925-8388(94)90006-X
- Markovski S.L., Micke K., Richter K.W. et al. // J. Alloys Compd. 2000. V. 302. P. 128. https://doi.org/10.1016/S0925-8388(99)00575-7
- Roy N., Kumari S., Sikdar R. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 14. P. 1410. https://doi.org/10.1002/ejic.202100064
- Cao Z., Xie W., Wang K. et al. // J. Electron. Mater. 2013. V. 42. № 8. P. 2615. https://doi.org/10.1007/s11664-013-2599-7
- Маренкин С.Ф., Трухан В.М., Труханов С.В. и др. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1478. https://doi.org/10.7868/S0044457X13110135
- Маренкин С.Ф., Аронов А.Н., Федорченко И.В. и др. // Патент 2019. RU 2700896 C1.
- Marenkin S.F., Korkin D.E., Jaloliddinzoda M. et al. // Mater. Chem. Phys. 2023. V. 300. Р. 127547. https://doi.org/10.1016/j.matchemphys.2023.127549
- Сафаралиев Т.И., Вагабова Л.К. // Изв. АН СССР. Сер. Неорган. материалы. 1988. Т. 24. С. 457.
- Liu W.E., Mohney S.E. // Mater. Sci. Eng. B. 2003. V. 103. P. 189. https://doi.org/10.1016/S0921-5107(03)00214-9
- Seshu Bai V., Rama Rao K.V.S. // Phys. Status Solidi A. 1982. V. 73. P. K303.
- Pashkova O.N., Oveshnikov L.N., Ril A.I. et al. // Russ. J. Inorg. Chem. 2024. V. 69. № 7. P. 965. https://doi.org/10.1134/S003602362460076X
- Смирнова М.Н., Нипан Г.Д., Пашкова О.Н., Никифорова Г.Е. // Докл. РАН. Химия, науки о материалах. 2024. Т. 519. С. 32.
