Study of Fluorescence Quenching by Bilirubin of a Carbocyanine Dye in Complex with DNA. Effect of Cu2+ Additives
- 作者: Pronkin P.G.1, Tatikolov A.S.1
-
隶属关系:
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
- 期: 卷 44, 编号 6 (2025)
- 页面: 43-54
- 栏目: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://bulletin.ssaa.ru/0207-401X/article/view/686506
- DOI: https://doi.org/10.31857/S0207401X25060031
- ID: 686506
如何引用文章
详细
The effect of bilirubin on the spectral fluorescence properties of the cationic thiacarbocyanine dye Cyan 2 in the presence of DNA was studied. The Cyan 2 dye forms a non-covalent complex with DNA, which leads to an increase in the fluorescence of the dye. Interaction with bilirubin leads to effective quenching of dye fluorescence in complex with DNA (static mechanism), which can be used to construct a spectral-fluorescent sensor for bilirubin. The results of in vitro experiments are illustrated by in silico molecular docking experiments. The effect of Cu2+ ion additives can further enhance the quenching of dye fluorescence by bilirubin. Effective quenching constants and detection limits of bilirubin using the Cyan 2–DNA system (LOD and LOQ) are determined.
全文:

作者简介
P. Pronkin
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: pronkinp@gmail.com
俄罗斯联邦, Moscow
A. Tatikolov
Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Email: pronkinp@gmail.com
俄罗斯联邦, Moscow
参考
- Pronkin P.G., Tatikolov A.S. // Molecules. 2022. V. 27. № 19. P. 6367. https://doi.org/10.3390/molecules27196367
- Tatikolov A.S., Pronkin P.G., Shvedova L.A., Panova I.G. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 900. https://doi.org/10.1134/S1990793119060290
- Kim S.Y., Park S.C. // Front. Pharmacol. 2012. V. 3. P. 45. https://doi.org/10.3389/fphar.2012.00045
- Tatikolov A.S., Panova I.G. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1473. https://doi.org/10.1134/S1990793124701173
- Soto Conti C.P. // Arch. Argent. Pediatr. 2021. V. 119. № 1. P. e18. https://doi.org/10.5546/aap.2021.eng.e18
- Tatikolov A.S., Pronkin P.G., Panova I.G. // Biophys. Chem. 2025. V. 318. P. 107378. https://doi.org/10.1016/j.bpc.2024.107378
- Singla N., Ahmad M., Mahajan V., Singh P., Kumar S. // Sens. Diagn. 2023. V. 2. P. 1574. http://dx.doi.org/10.1039/D3SD00157A
- Karmakar S., Das T.K., Kundu S., Maiti S., Saha A. // ACS Appl. Bio Mater. 2020. V. 3. P. 8820. https://doi.org/10.1021/acsabm.0c01165
- Xiao W., Liu J., Xiong Y., et al. // Anal. Bioanal. Chem. 2021. V. 413. P. 7009. https://doi.org/10.1007/s00216-021-03660-6
- Speck W., Behrman R. // Pediatr. Res. 1974. V. 8. P. 451. https://doi.org/10.1203/00006450-197404000-00665
- Velapoldi R.A., Menis O. // Clinical Chem. 1971. V. 17. № 12. P. 1165. PMID: 5118155
- Asad S.F., Singh S., Ahmad A., Hadi S.M. // Biochim. Biophys. Acta. 1999. V. 1428. № 2–3. P. 201. https://doi.org/10.1016/s0304-4165(99)00075-6
- Asad S.F., Singh S., Ahmad A., Hadi S.M. // Toxicology Lett. 2002. V. 131. № 3. P. 181. https://doi.org/10.1016/s0378-4274(02)00031-0
- Akimkin T.M., Tatikolov A.S., Yarmoluk S.M. // High Energy Chem. 2011. V. 45. P. 222. https://doi.org/10.1134/S0018143911030027
- Y armoluk S.M., Lukashov S.S., Losytskyy M.Y., Akerman B., Kornyushyna O.S. // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2002. V. 58. № 14. P. 3223. https://doi.org/10.1016/S1386-1425(02)00100-2
- Xu C., Losytskyy M.Y., Kovalska V.B., Kryvorotenko D.V., Yarmoluk S.M., McClelland S., Bianco P.R. // J. Fluoresc. 2007. V. 17. P. 671. https://doi.org/10.1007/s10895-007-0215-z
- Tatikolov A.S., Akimkin T.M., Pronkin P.G., Yarmoluk S.M. // Chem. Phys. Lett. 2013. V. 556. P. 287. https://doi.org/10.1016/j.cplett.2012.11.097
- Mukerjee P., Ostrow J.D., Tiribelli C. // BMC Biochem. 2002. V. 3. P. 17. https://doi.org/10.1186/1471-2091-3-17
- Baguley B.C., Falkenhaug E.M. // Nucleic Acids Res. 1978. V. 5. № 1. P. 161. https://doi.org/10.1093/nar/5.1.161
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Springer, 2006. 954 p.
- Hubaux A., Vos G. // Anal. Chem. 1970. V. 42. No. 8. P. 849. https://doi.org/10.1021/ac60290a013
- MacDougall D., Crummett W.B. et al. // Anal. Chem. 1980. V. 52. P. 2242. https://doi.org/10.1021/ac50064a004
- Valdes-Tresanco M.S., Valdes-Tresanco M.E., Valiente P.A., Moreno E. // Biol. Direct. 2020. V. 15. P. 12. https://doi.org/10.1186/s13062-020-00267-2
- Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. // Proc. Natl. Acad. Sci. USA. 1981. V. 78. P. 2179. https://doi.org/10.1073/pnas.78.4.2179
- Dautant A., Langlois d’Estaintot B., Gallois B., Brown T., Hunter W.N. // Nucleic Acids Res. 1995. V. 23. P. 1710. https://doi.org/10.1093/nar/23.10.1710
- Yang Z., Lasker K., Schneidman-Duhovny D., Webb B., Huang C.C., Pettersen E.F., Goddard T.D., Meng E.C., Sali A., Ferrin T.E. // J. Struct. Biol. 2012. V. 179. P. 269. https://doi.org/10.1016/j.jsb.2011.09.006
- Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // J. Cheminformatics. 2012. V. 4. P. 1. https://doi.org/10.1186/1758-2946-4-17
- Pronkin P.G., Shvedova L.A., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 369. https://doi.org/10.1134/S1990793124020155
- Pronkin P.G., Tatikolov A.S. // High Energy Chemistry. 2009. V. 43. № 6. P. 471. https://doi.org/10.1134/S0018143909060101
- Pronkin P.G., Tatikolov A.S. // High Energy Chemistry. 2011. V. 45. № 2. P. 140. https://doi.org/10.1134/S0018143911020123
- Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 1. https://doi.org/10.1134/S1990793122010262
- Pronkin P.G., Tatikolov A.S. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 25. https://doi.org/10.1134/S1990793121010267
- Yarmoluk S.M., Lukashov S.S., Ogul’chansky T.Y., Losytskyy M.Y., Kornyushyna O.S. // Biopolymers (Biospectroscopy). 2001. V. 62. P. 219. https://doi.org/10.1002/bip.1016
- Galhano J., Marcelo G.A., Santos H.M., Capelo-Martínez J.L., Lodeiro C., Oliveira E. // Chemosensors. 2022. V. 10. P. 80. https://doi.org/10.3390/chemosensors10020080
- Hanmeng O., Chailek N., Charoenpanich A. et al. // Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 240. P. 118606. https://doi.org/10.1016/j.saa.2020.118606
- Chen X., Nam S.W., Kim G.H. et al. // Chem. Commun. 2010. V. 46. № 47. P. 8953. http://dx.doi.org/10.1039/C0CC03398G
- Li J., Ge J., Zhang Z., Qiang J., Wei T., Chen Y., Li Z., Wang F., Chen X. // Sensor Actuat B-Chem. 2019. V. 296. P. 126578. https://doi.org/10.1016/j.snb.2019.05.055
- Krishna R.M., Gupta S.K. // Bull. Magnetic Resonance. 1994. V. 16. № 3. P. 239.
- Taniguchi M., Lindsey J.S. // J. Photochem. Photobiol. C. 2023. V. 55. P. 100585. https://doi.org/10.1016/j.jphotochemrev.2023.100585
- Ghosh D., Chattopadhyay N. // J. Luminesc. 2015. V. 160. P. 223. https://doi.org/10.1016/j.jlumin.2014.12.018
- Achyuthan K.E., Bergstedt T.S., Chen L. // J. Materials Chem. 2005. V. 15. № 27–28. P. 2648. https://doi.org/10.1039/b501314c
- Poletaev A.I. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1168. https://doi.org/10.1134/S1990793123050093
- Tereshkin E.V., Tereshkina K.B., Loiko N.G. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 1604. https://doi.org/10.1134/S199079312470146X
- Razumov W.F. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 36. https://doi.org/10.1134/S199079312301027X
补充文件
