Examination of the broadband low-frequency emitters in the study of temperature regimes in the Sea of Japan

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The use of technical means and methods of low-frequency hydroacoustics for monitoring the variability of average temperatures of underwater sound channels in the Sea of Japan is considered. A review of the characteristics of the line of powerful inter-piston hydroacoustic emitters developed by the Institute of Applied Physics of the Russian Academy of Sciences, developed by the Institute of Applied Physics of the Russian Academy of Sciences, is carried out, promising for organizing long acoustic routes. The results of measurements of the electroacoustic characteristics of low-frequency hydroacoustic emitters under natural conditions at depths of up to 150 m are presented, and the use of these emitters for studying the temperature regimes of associated underwater sound channels of the shelf and deep sea on multi-scale long routes in the Sea of Japan is also considered. Based on the processing of experimental data on an acoustic path with a length of about 1000 km, obtained in 2022, examples of the reconstruction of average water temperature values from data on the speed of sound along the acoustic path are given, the sensitivity of the method is assessed, and the signal-to-noise ratio values achieved in the experiment are analyzed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

B. Bogolyubov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: golov_alexander@inbox.ru
Ресей, Ulyanova 46, Nizhny Novgorod, 603950

A. Britenkov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: golov_alexander@inbox.ru
Ресей, Ulyanova 46, Nizhny Novgorod, 603950

D. Kasyanov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: golov_alexander@inbox.ru
Ресей, Ulyanova 46, Nizhny Novgorod, 603950

V. Farfel

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS)

Email: golov_alexander@inbox.ru
Ресей, Ulyanova 46, Nizhny Novgorod, 603950

Yu. Morgunov

V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (POI FEB RAS)

Email: golov_alexander@inbox.ru
Ресей, Baltiyskaya Street 43, Vladivostok, 690041

V. Besotvetnykh

V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (POI FEB RAS)

Email: golov_alexander@inbox.ru
Ресей, Baltiyskaya Street 43, Vladivostok, 690041

E. Voitenko

V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (POI FEB RAS)

Email: golov_alexander@inbox.ru
Ресей, Baltiyskaya Street 43, Vladivostok, 690041

A. Golov

V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (POI FEB RAS)

Хат алмасуға жауапты Автор.
Email: golov_alexander@inbox.ru
Ресей, Baltiyskaya Street 43, Vladivostok, 690041

A. Tagiltsev

V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (POI FEB RAS)

Email: golov_alexander@inbox.ru
Ресей, Baltiyskaya Street 43, Vladivostok, 690041

Әдебиет тізімі

  1. Howe B.M., Anderson S.G., Baggeroer A.B., Colosi J.A., Hardy K.R., Horwitt D., Karig F.W., Leach S., Mercer J.A., Metzger K., et al. Instrumentation for the Acoustic Thermometry of Ocean Climate (ATOC) prototype Pacific Ocean network // Proc. Conference ‘Challenges of Our Changing Global Environment’. OCEANS’95 MTS/IEEE, San Diego, CA, USA, 9–12 October 1995. P. 1483–1500.
  2. Munk W. Acoustic thermometry of ocean climate (ATOC) // J. Acoust. Soc. Am. 1999. V. 105. № 2. Р. 982.
  3. Акуличев В.А., Безответных В.В., Буренин А.В., Войтенко Е.А., Моргунов Ю.Н. Эксперимент по оценке влияния вертикального профиля скорости звука в точке излучения на шельфе на формирование импульсной характеристики в глубоком море // Акуст. журн. 2010. Т. 56. № 1. С. 51–52.
  4. Безответных В.В., Буренин А.В., Войтенко Е.А., Моргунов Ю.Н. Оценки эффективной скорости распространения низкочастотных фазоманипулированных сигналов на протяженных трассах при сложных гидролого-акустических условиях и переменном рельефе дна // Подводные исследования и робототехника. 2008. № 2(6). С. 58–63. EDN KYIJWL
  5. Вировлянский А.Л., Казарова А.Ю., Любавин Л.Я. Восстановление средней температуры океана по измерениям времени пробега звуковых импульсов // Акуст. журн. 2007. Т. 53. № 2. С. 216–225.
  6. Зверев В.А., Голубев В.Н., Коротин П.И. Условия выделения лучей по времени их прихода на больших расстояниях и низких частотах //Акуст. журн. 2020. Т. 66. № 2. С. 163–169.
  7. Зверев В.А., Стромков А.А. Увеличение временной селекции сигналов, принимаемых по лучам при зондировании океана посредством М-последовательности // Акуст. журн. 2003. Т. 49. № 4. С. 514–518.
  8. Римский-Корсаков А.В. и др. Акустические подводные низкочастотные излучатели. Л.: Судостроение, 1984. 184 с.
  9. Morozov A.K. and Webb D.C. A Sound Projector for Acoustic Tomography and Global Ocean Monitoring // IEEE J. Oceanic Engineering. 2003. V. 28. No 2. P. 174-185.
  10. Богородский В.В., Зубарев Л.А., Корепин Е.А., Якушев В.И. Подводные электроакустические преобразователи. Л.: Судостроение, 1983. 248 с.
  11. Бритенков А.К., Фарфель В.А., Боголюбов Б.Н. Сравнительный анализ электроакустических характеристик компактных низкочастотных гидроакустических излучателей высокой удельной мощности // Прикладная физика. 2021. № 3. С. 72–77. https://doi.org/10.51368/1996-0948-2021-3-72-77
  12. Tappert F.D., Spiesberger J.L., Wolfson M.A. Study of a novel range-dependent propagation effect with application to the axial injection of signals from the Kaneohe source // J. Acoust. Soc. Am. 2002. V. 111. № 2. P. 757.
  13. Сhen C.-T., Millero F.J. Speed of sound in seawater at high pressures // J Acoust. Soc. Am. 1977. V. 62 (5). P. 1129–1135.
  14. Kaneko A., Zhu X.H., Lin J. Coastal acoustic tomography // Coast. Acoust. Tomogr. 2020. P. 1–362. https://doi.org/10.1016/C2018-0-04180-8
  15. Prants S.V., Lobanov V.B., Budyansky M.V., Uleysky M.Y. Lagrangian analysis of formation, structure, evolution and splitting of anticyclonic Kuril eddies. Deep Sea Research Part I // Oceanographic Research Papers. 2016. V.109. P. 61–75.
  16. Prants S.V., Uleysky M.Y., Budyansky M.V. Lagrangian oceanography: large-scale transport and mixing in the ocean // Physics of Earth and Space Environments. Springer, 2017.
  17. Dolgikh G., Morgunov Y., Burenin A., Bezotvetnykh V., Luchin V., Golov A., Tagiltsev A. Methodology for the Practical Implementation of Monitoring Temperature Conditions over Vast Sea Areas Using Acoustic Thermometry // J. Mar. Sci. Eng. 2023. V. 11. P. 137. https://doi.org/10.3390/jmse11010137
  18. Моргунов Ю.Н., Голов А.А., Войтенко Е.А., Лебедев М.С., Разживин В.В., Каплуненко Д.Д., Шкрамада С.С. Экспериментальное тестирование акустической термометрии в масштабе Японского моря с размещением приемной системы на оси подводного звукового канала // Акуст. журн. 2023. Т. 69. № 5. С. 559–568. https://doi.org/10.31857/S0320791923600348

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Design of a LF with a biconical radiating surface

Жүктеу (116KB)
3. Rice. 2. Line of NFBs of the Beacon type: (a) - Beacon-1, (b) - Beacon-2, (c) - Beacon-3, (d) - Beacon-4

Жүктеу (298KB)
4. Fig. 3. Characteristic dependence of the sound pressure developed by the Beacon-1 type LFPI

Жүктеу (77KB)
5. Fig. 4. Characteristic dependence of sound pressure developed by the Beacon-2 type LFPI

Жүктеу (81KB)
6. Fig. 5. Characteristic dependence of sound pressure developed by the Beacon-3 type LFPI

Жүктеу (86KB)
7. Fig. 6. Characteristic dependence of sound pressure developed by the Beacon-4 type LFPI

Жүктеу (79KB)
8. Fig. 7. NCHI with a rod with a control hydrophone installed on a support

Жүктеу (182KB)
9. Fig. 8. Developed effective acoustic pressure (reduced to 1 m) of the LF located at a depth of 150 m. The inductance of the matching choke is 50 mH.

Жүктеу (224KB)
10. Fig. 9. Scheme of the experiment on acoustic thermometry on the route from Chekhov village to Kito-Yamato bank

Жүктеу (407KB)
11. Fig. 10. Autocorrelation functions of electronic masks of emitted signals

Жүктеу (230KB)
12. Fig. 11. Typical impulse response of a set of emitted signals

Жүктеу (369KB)
13. Fig. 12. Signal-to-noise ratio for a set of signals (a) of short duration (up to 13 s) and (b) of long duration (more than 30 s). Interruptions in equipment operation are indicated by arrows

Жүктеу (336KB)
14. Fig. 13. Results of measuring the effective speed of sound and temperature on the PZK axis along the route. The dotted lines indicate the average values ​​of the quantities on the entire fragment.

Жүктеу (158KB)
15. Fig. 14. Lagrangian map of trajectory lengths (in km) for 30 days based on AVISO velocity field data. Dark color corresponds to areas of active advection of water masses. Red and green triangles are the centers of anticyclones and cyclones, respectively. Orange crosses are hyperbolic points. Yellow line is the acoustic path.

Жүктеу (288KB)

© The Russian Academy of Sciences, 2025