УГЛЕКИСЛОТНЫЙ РИФОРМИНГ МЕТАНА В ТЛЕЮЩЕМ РАЗРЯДЕ НА ЧАСТОТЕ 50 ГЦ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ
- Авторы: Батукаев Т.С.1, Лебедев Ю.А.1
-
Учреждения:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Выпуск: Том 51, № 3 (2025)
- Страницы: 342-348
- Раздел: НИЗКОТЕМПЕРАТУРНАЯ ПЛАЗМА
- URL: https://bulletin.ssaa.ru/0367-2921/article/view/686869
- DOI: https://doi.org/10.31857/S0367292125030095
- EDN: https://elibrary.ru/GBNVZV
- ID: 686869
Цитировать
Аннотация
Проведено хроматографическое исследование продуктов тлеющего разряда атмосферного давления в смеси CO2 и CH4. Разряд зажигался с помощью источника на частоте 50 Гц при напряжении на разряде до 10 кВ. Основными газовыми продуктами на выходе разряда являются Н2 (∼55 %), СО (∼40 %). Показано, что свойства разряда определяются соотношением расходов CO2 и CH4 на входе реактора. При одинаковых расходах CO2 и CH4 на входе реактора в разряде, кроме газовых продуктов, образуются сажевые частицы. При увеличении содержания CO2 в смеси процесс сажеобразования подавляется и в разряде появляются пары воды. Проанализированы осциллограммы тока и напряжения на разряде, получены оценки энергии, необходимые для получения водорода и идущей на разложение CO2.
Об авторах
Т. С. Батукаев
Институт нефтехимического синтеза им. А.В. Топчиева РАНМосква, Россия
Ю. А. Лебедев
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: lebedev@ips.ac.ru
Москва, Россия
Список литературы
- Snoeckx R., Bogaerts A. // Chemical Society Rev. 2017. V. 46. P. 5805. https://doi.org/10.1039/C6CS00066E
- Adwek G., Boxiong S., Michael C., Yaolin W., Dongrui K., Chunfei W., Xin T. // Renewable Sustainable Energy Rev. 2021. V. 135. P. 109702. https://doi.org/10.1016/j.rser.2020.109702
- Trenchev G., Nikiforov A., Wang W., Kolev St., Bogaerts A. // Chemical Engineering J. 2019. V. 362. P. 830. https://doi.org/10.1016/j.cej.2019.01.091
- Bongers W., Bouwmeester H., Wolf B., Peeters F., Welzel S., Bekerom D., Harder N., Goede A., Graswinckel M., Groen P.W., Kopecki J., Leins M., Rooij G., Schulz A., Walker M., Sanden R. // Plasma Process Polym. 2017. V. 14. P. e1600126. https://doi.org/10.1002/ppap.201600126
- Chang-jun L., Gen-hui X., Timing W. // Fuel Processing Technology. 1999. V. 58. P. 119. https://doi.org/10.1016/S0378-3820(98)00091-5
- Pacheco J., Soria G., Pacheco M., Valdivia R., Ramos F., Fr´as H., Duran M., Hidalgo M. // Int. J. Hydrogen Energy. 2015. V. 40. P. 17165. https://doi.org/10.1016/j.ijhydene.2015.08.062
- Ikeda A., Hunge Y.M., Teshima K., Uetsuka H., Terashima C. // Energy Fuels. 2024. V. 38. P. 11918. https://doi.org/10.1021/acs.energyfuels.4c01214
- Batukaev T.S., Bilera I.V., Krashevskaya G.V., Lebedev Yu.A., Nazarov N.A. // Plasma. 2023. V. 6. P. 115. https://doi.org/10.3390/plasma6010010
- Deminsky M., Jivotov V., Potapkin B., Rusanov V. // Pure Appl. Chem. 2002. V. 74. 3. P. 413.
- Бабарицкий А.И., Баранов Е.И., Дёмкин С.А., Животов В.К., Потапкин Б.И., Русанов В.Д., Рязанцев Е.И., Этиван К. // Химия Высоких Энергий. 1999. T. 33. C. 458.
- Животов В.К., Потапкин Б.В., Русанов В.Д. Энциклопедия низкотемпературной плазмы. Тематический том VIII-1 .Химия низкотемпературной плазмы. / Ред. Ю.А. Лебедев, Н.А. Платэ, В.Е. Фортов. М., Янус-К, 2005. С. 4.
- Amin M.H. // Prog. Petrochem. Sci. 2018. V. 2. P. 161. https://doi.org/10.31031/PPS.2018.02.000532
- Usman M., Daud W.M.A.W., Abbas H.F. // Renewable Sustainable Energy Rev. 2015. V. 45. P. 710. https://doi.org/10.1016/j.rser.2015.02.026
- Abiev R.Sh., Sladkovskiy D.A., Semikin K.V., Murzin D.Yu., Rebrov E.V. // Catalysts. 2020. V. 10. P. 1358. https://doi.org/10.3390/catal10111358
- Vasconcelos B.R., Lavoie J.M. // Int. J. Energy Prod. Management. 2018. V. 3. P. 44. https://doi.org/10.2495/EQ-V3-N1-44-56
- Курина Л.Н., Аркатова Л.А., Харламова Т.С., Галактионова Л.В., Найбороденко Ю.С., Касацкий Н.Г., Голобоков Н.Н. // Успехи современного естествознания. 2006.№4. С. 55.
- Hussien A.G.S., Polychronopoulou K. // Nanomaterials. 2022. V. 12. P. 3400. https://doi.org/10.3390/nano12193400
- Muraza O., Galadima A. // Int. J. Energy Res. 2015. V. 39. P. 1196. https://doi.org/10.1002/er.3295
- Энгель А. Ионизованные газы. М.: Из-во физикоматематической л-ры, 1959. 224 с.
- Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 361 с.
- Moisan M., Pelletier J. Physics of Collisional Plasmas. Introduction to High-Frequency Discharges. Dordrecht: Springer Science + Business Media, 2012.
- Yang Y. // Industrial Engineering Chemistry Res. 2002. V. 41. P. 5918. https://doi.org/10.1021/ie0202322
- Jiang T., Li M., Li Y., Xu G., Liu C., Eliasson B. // J. Tianjin University. 2002. V. 35. P. 19.
- Ghorbanzadeh A., Lotfalipour R., Rezaei S. // Int. J. Hydrogen Energy. 2009. V. 34. P. 293. https://doi.org/10.1016/j.ijhydene.2008.10.056
- Long H., Shang S., Tao X., Yin Y., Dai X. // Int. J. Hydrogen Energy. 2008. V. 33. P. 5510. https://doi.org/10.1016/j.ijhydene.2008.05.026
- Indarto A., Choi J.-W., Lee H., Song H.K. // Energy. 2006. V. 31. P. 2986. https://doi.org/10.1016/j.energy.2005.10.034
- Lan T., Ran Y., Long H., Wang Y., Yin Y. // Nat. Gas Ind. 2007. V. 27. P. 129.
- Goujard V., Tatibouet J.M., Batiot-Dupeyrat C. // Plasma Chem. Plasma P. 2011. V. 31. P. 315. https://doi.org/10.1007/s11090-010-9283-y
- Ravari F., Fazeli S.M., Bozorgzadeh H.R., Sadeghzadeh Ahari J. // Physical Chemistry Res. 2017. V. 5. P. 395.
Дополнительные файлы
