такие как валовый прирост и стоимость израсходованных кормов. Анализируя данные таблицы 4, можно сделать вывод, что применение пробиотика Муцинол при выращивании поросят позволило получить дополнительную условную прибыль в опытной группе в количестве 8508,6 руб. в целом за весь период опыта. На каждую выращенную голову во второй группе было получено 447 руб. дополнительной прибыли.

Таблица 4 Экономическая эффективность применения пробиотика Муцинол при выращивании поросят

окономическая эффективноств применения прооистика мудинол при выращивании поросят							
Показатели	Контрольная группа	Опытная группа					
Валовый прирост за опыт, кг	232,9	300,2					
Получено дополнительно прироста, кг	-	67,3					
Выручка от условной реализации, руб.	34935	45030					
Затрачено кормов за период выращивания, кг	475,3	543,8					
Стоимость израсходованных кормов, руб.	6844,3	7830,7					
Стоимость затраченного пробиотика, руб.	-	600,0					
Доход от условной реализации, руб.	28090,7	36599,3					
Лополнительная условная прибыль, руб	_	447.8					

Пробиотик Муцинол оказывает положительное влияние на рост и развитие поросят. Использование пробиотика привело к повышению стоимости кормов в опытной группе на 14,4%. Вместе с тем валовый прирост живой массы в опытных группах был выше на 28,8%, за счёт чего снизилась себестоимость продукции.

Заключение. Применение пробиотика Муцинол с суточного до 60-дневного возраста повышает у поросят среднесуточный прирост на 15,3%, сохранность на 11,8% и способствует интенсивному росту и развитию их организма.

Библиографический список

- 1. Албулов, А. И. Влияние пробиотика «Муцинол»-экстра на гематоморфологические и биохимические показатели организма телочек / А. И. Албулов, Р. С. Краснокутский, А. Р. Таирова // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. Казань. 2014. №3. С. 9-13.
- 2. Башаров, А. А. Значение пробиотиков серии «Витафорт» при выращивании телят молочного периода / А. А. Башаров, Ф. С. Хазиахметов // Известия Самарской ГСХА. 2011. Вып. 1. С. 82-86.
- 3. Болотина, Е. Н. Использование стимулятора роста натузим при откорме свиней // Известия Самарской ГСХА. 2010. Вып. 1. С. 73-76.
- 4. Болотина, Е. Н. Эффективность откорма свиней при использовании различных белково-витаминно-минеральных добавок // Известия Самарской ГСХА. 2011. Вып. 1. С. 92-94.
- 5. Болотина, Е. Н. Эффективность использования экструдированных кормов при выращивании молодняка свиней // Известия Самарской ГСХА. 2012. Вып. 1.– С. 142-146.
 - 6. Кундышев, П. И. Повышение переваримости кормов свиньями // Комбикорма. №1. 2009. С. 17.
- 7. Нугуманов, Г. О. Пробиотик «Витафорт» в рационах поросят-отъемышей / Г. О. Нугуманов, Ф. С. Хазиахметов // Известия Самарской ГСХА. 2012. №1. С. 162-164.
- 8. Чиков, А. Эффективность пробиотика при повышенном содержании клетчатки в рационе свиней / А. Чиков, С. Кононенко, Н. Омельченко [и др.] // Комбикорма. №7. 2012. С. 95-96.
- 9. Шамилова, Т. А. Изучение эффективности пробиотика в опытах на свиньях / Т. А. Шамилова, Н. М. Шамилов // Ученые записки Казанской государственной академии ветеринарной медицины им. Н. Э. Баумана. Казань. 2012. №211. С. 337-340.
- 10. Российские биотехнологии Кросфарм [Электронный ресурс]. Режим доступа: http://krosfarm.ru/ (дата обращения: 12.07.2014).

УДК 636.2.034:579.252.55

СВЯЗЬ ПОКАЗАТЕЛЕЙ МОЛОЧНОЙ ПРОДУКТИВНОСТИ И ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ ОРГАНИЗМА ЖИВОТНЫХ

Карамаева Анна Сергеевна, канд. биол. наук, доцент кафедры «Технология производства продуктов животноводства», ФГБОУ ВПО Самарская ГСХА.

446442, Самарская область, п.г.т. Усть-Кинельский, ул. Учебная, 2.

E-mail: annararamaev@rambler.ru

Коровин Алексей Витальевич, аспирант кафедры «Технология производства продуктов животноводства», ФГБОУ ВПО Самарская ГСХА.

446442, Самарская область, п.г.т. Усть-Кинельский, ул. Учебная, 2.

E-mail: KaramaevSV@mail.ru

Ключевые слова: удой, порода, кровь, резистентность, корреляция, коэффициент.

Цель исследований – повышение эффективности отбора и подбора родительских пар при селекционноплеменной работе по совершенствованию молочной продуктивности и адаптационных способностей молочных пород скота. Проанализировав связи показателей крови с показателями молочной продуктивности и качества молока, установили, что между ними имеется корреляционная зависимость разной силы и направления, которая позволяет при селекционном отборе и подборе родительских пар усиливать действие положительных качеств, ослабляя нежелательные. На основании полученных результатов установлено, что между изучаемыми показателями крови и молочной продуктивностью преобладает низкая (г=0,1-0,3) и средняя (г=0,4-0,6) степень взаимосвязи. При этом прямолинейная положительная связь удоя коров установлена только с содержанием в крови эритроцитов, гемоглобина и нейтрофилов. Прямолинейная отрицательная связь удоя с содержанием лейкоцитов в крови у коров бестужевской и черно-пестрой пород, удоя с содержанием в крови лимфоцитов у коров черно-пестрой и голитинской пород. Установлено, что и клеточные и гуморальные факторы, характеризующие естественную резистентность организма, являются очень лабильными как между породами, так и внутри каждой изучаемой породы. Они могут уменьшаться или увеличиваться как параллельно, так и компенсируя друг друга. Практическое значение корреляции между признаками заключается в том, что они позволяют при отборе и подборе родительских пар не только усиливать действие положительных качеств, ослабляя нежелательные, но и, при наличии положительной связи, вести селекцию по меньшему числу признаков, что намного проще и эффективнее. В этом случае значительно ускоряются темпы генетического совершенствования стад.

На современном этапе развития племенного дела осуществление эффективной селекции в молочном скотоводстве основывается на познании генетических закономерностей отдельных стад и пород в целом. Эффективность селекционной работы не должна ограничиваться получением высокопородных животных в данной генерации. Важно создать предпосылки для получения ценного в последующих поколениях, что будет зависеть от проявления наследственных задатков, направления отбора, условий внешней среды. Необходимо знать и правильно использовать существующие коррелятивные связи между различными хозяйственными признаками [1, 2, 3]. Возросший в последние годы интерес к проблеме продуктивности, в первую очередь, обусловлен теми трудностями, с которыми сталкиваются специалисты в своих усилиях повысить уровень продуктивности коров. Объяснить это можно все более выраженным проявлением отрицательных корреляций между некоторыми физиологическими и хозяйственно-полезными признаками по мере роста продуктивности животных. Проглядывается тенденция к манипулированию теми участками метаболизма, где можно ожидать сокращения энергетических и субстративных затрат, прежде всего, на поддержание жизни, в пользу увеличения затрат на продуктивность [4, 5, 6]. Исследования в области генетики, селекции, онтогенеза показали, что для популяции живых организмов наиболее характерна корреляционная, а не функциональная (полная) связь между признаками. При этом прямолинейная связь встречается значительно реже. чем криволинейная [7, 8]. В связи с этим определенный интерес представляет выяснение характера и особенностей корреляций между показателями молочной продуктивности и результатами исследования крови у коров, районированных в зоне Среднего Поволжья пород, молочного направления продуктивности и с разной степенью акклиматизации к природно-климатическим и кормовым условиям региона [9, 10].

Цель исследований – повышение эффективности отбора и подбора родительских пар при селекционно-племенной работе по совершенствованию молочных пород скота.

Задача исследований — установить корреляционную зависимость показателей молочной продуктивности с гематологическими и иммунологическими показателями в организме коров.

Материалы и методы исследований. Исследования проводились в ОПХ «Красногорское» Самарской области на коровах чёрно-пёстрой, бестужевской и голштинской пород в условиях современного комплекса по производству молока. Учёт молочной продуктивности проводили методом контрольных доек ежедекадно. Химический состав молока изучали на третьем месяце лактации в условиях молочной лаборатории Самарской ГСХА. Морфологический состав, биохимические свойства крови и показатели естественной резистентности организма изучали в лаборатории Управления ветеринарии Безенчукского района по общепринятым методикам. Корреляционную взаимосвязь между изучаемыми признаками определяли с использованием ПК и программного приложения Microsoft Excel из программного пакета Microsoft Office 2000.

Результаты исследований. Проанализировав связи показателей крови с показателями молочной продуктивности и качества молока, установили, что между ними имеется корреляционная зависимость разной силы и направления, которая позволяет при селекционном отборе и подборе родительских пар усиливать действие положительных качеств, ослабляя нежелательные. На основании полученных результатов установлено, что между изучаемыми показателями крови и молочной продуктивности преобладает низкая (г=0,1-0,3) и средняя (г=0,4-0,6) степень взаимосвязи. При этом прямолинейная положительная связь удоя коров установлена только с содержанием в крови эритроцитов, гемоглобина и нейтрофилов. Прямолинейная отрицательная связь удоя с содержанием лейкоцитов в крови у коров бестужевской и черно-пестрой пород, удоя с содержанием лимфоцитов у коров черно-пестрой и голштинской пород. В качестве породной особенности можно выделить, что у коров бестужевской породы между удоем и содержанием в крови эритроцитов и гемоглобина в начале и конце лактации существует слабая корреляционная связь, а в середине лактации средняя – г=0,30-0,46. С эритроцитами наиболее сильная связь отмечена на 5-м месяце (г=0,42), с гемоглобином на 3-м месяце лактации (г=0,46). Вероятно, в связи с тем, что среднесуточные удои в ходе лактации изменяются более динамично, корреляция с ними была слабой (г=0,26-0,27), а с удоем за 305 дней

лактации – средней степени (r=0,33-0,38). У коров черно-пестрой породы взаимосвязь между удоем, эритроцитами и гемоглобином на всех этапах лактации была положительная низкой степени без существенных перепадов и изменений. Это говорит о том, что влияние каких-то факторов сдерживает или подавляет проявление положительного взаимодействия изучаемых признаков у животных черно-пестрой породы. Голштинская порода менее акклиматизирована к внешним условиям региона, но с другой стороны она значительно превосходит отечественные породы по уровню молочной продуктивности. Это, вероятно, обусловило то, что между удоем, содержанием эритроцитов и гемоглобина в крови у голштинских коров существует положительная взаимосвязь средней и высшей степени. Исключением является 5-й месяц лактации, когда после пика лактационной кривой наблюдается резкое снижение корреляции между изучаемыми показателями. Самый высокий коэффициент корреляции также установлен у голштинской породы на 3-м месяце лактации: между удоем и содержанием эритроцитов (r=0,63), удоем и гемоглобином (r=0,69). Белок и его фракции в крови, в основном, являются основой веществ, которые отвечают за естественную резистентность живого организма (лизоцим, интерферон, антитела). Следовательно, при наличии корреляционной зависимости между белками крови, удоем и белками молока, можно говорить о том, что существует взаимная связь величины удоя и белков молока с естественной резистентностью организма. При этом следует отметить, что установленная между изучаемыми показателями связь носит криволинейный характер, то есть связь удоя с содержанием в крови общего белка, альбуминов и у-глобулинов в начале лактации положительная, а во второй её половине отрицательная. Связь с α- и β-глобулинами, наоборот, в первой половине лактации отрицательная, а после 5-го месяца лактации положительная. Корреляция между показателями молочной продуктивности и белками крови в большинстве случаев слабой степени. Между величиной среднесуточного удоя и удоя за 305 дней лактации с общим белком крови установлена отрицательная корреляционная зависимость низкой и средней степени. При этом наиболее высокая связь отмечена у коров голштинской породы (г=-0.29-0,37), а самая низкая – у черно-пестрой породы (г=-0,08-0,12). Очень важно отметить, что связь общего белка крови с массовой долей белка (МДБ) в молоке положительная, но очень слабая от r=0,13 до r=0,23. Связь с белком молока казеином у всех изучаемых пород отрицательная низкой степени. Это, вероятно, обусловлено том, что синтез белков молока проходит в эпителиальных клетках вымени, содержание белка в молоке в 2 раза меньше чем в крови, белки молока значительно отличаются от белков крови, а белок-казеин, который составляет 80% всех белков молока, содержится только в молоке. Содержание в крови глюкозы и величина удоя коров имеют очень слабую положительную корреляционную зависимость в течение лактации. За исключением, у бестужевской породы 7- и 9-го месяцев лактации, у черно-пестрой и голштинской пород – 5-го месяца лактации, когда слабая положительная корреляция изменяется на слабую отрицательную. Содержание белков молока и глюкозы в крови животных связаны положительной корреляцией слабой степени. Особенно выделить следует то, что содержание глюкозы в крови и массовая доля жира (МДЖ) в молоке имеют положительную взаимосвязь средней степени от г=0.38 до г=0.48. При этом надо отметить, что чем выше содержание жира в молоке (бестужевская порода), тем слабее взаимосвязь изучаемых показателей и наоборот (голштинская порода).

Макроэлементы кальций и фосфор играют важную роль в обмене веществ. Корреляция между удоем по месяцам лактации и содержанием кальция в крови слабая, но в целом положительная. Исключение составляют 5- и 7-й месяц лактации, когда наблюдается слабая отрицательная корреляция, т.е. удои в данный период начинают постепенно снижаться, а содержание кальция в крови коров продолжает увеличиваться. Наиболее важным является то, что содержание кальция в крови положительно коррелирует с МДБ и содержанием казеина в молоке. У всех изучаемых пород отмечена средней степени взаимосвязь с МДБ (r=0,49-0,58) и сильная взаимосвязь с содержанием казеина (r=0,69-0,87). При этом наиболее сильная взаимосвязь установлена у коров бестужевской породы, характеризующейся высоким содержанием общего белка и белка-казеина в молоке, а самая слабая – у черно-пестрой породы, которая характеризуется низкой белковомолочностью. Объяснить то, вероятно, можно тем, что наиболее высокое содержание кальция находится именно в белке молока казеине, куда он поступает из крови. У фосфора крови с удоем отмечена очень слабая положительная взаимосвязь, а у массовой доли белка (МДБ) с казеином связь слабая и отрицательная. При отборе животных по жирномолочности в качестве теста на ранних стадиях лактации можно использовать содержание общих липидов в крови, так как они имеют среднюю положительную степень взаимосвязи с массовой долей жира в молоке (МДЖ). С белками молока связь положительная, но очень слабая; с удоем за 305 дней лактации и среднесуточным удоем связь отрицательная слабая. Для селекционеров может быть интересной корреляция содержания мочевины в крови с качественными показателями молока. У всех изучаемых пород установлена средняя положительная степень взаимосвязи с МДЖ и МДБ в молоке, соответственно r=0,36-0,45 и r=0,33-0,39. Между содержанием мочевины в крови и белком молока казеином имеется также положительная корреляция, но слабой степени г=0,20-0,31. В условиях промышленной технологии часто наблюдается действие на организм различных производственных раздражителей, которые вызывают

ответную реакцию со стороны организма в виде стресса, кроме того высокая концентрация животных на современных комплексах способствует возникновению и распространению инфекции разной этиологии, поэтому при селекции животных новых типов необходимо учитывать устойчивость организма к влиянию фенотипических факторов и заложенные генотипические факторы.

Изучение взаимосвязей между показателями естественной резистентности и молочной продуктивности коров показало, что в течение лактации корреляция между ними меняет как степень взаимодействия, так и направление. Установлено, что бактерицидная активность сыворотки крови (БАСК) с удоем за 305 дней лактации и среднесуточным удоем у коров бестужевской и черно-пестрой пород имеет слабую положительную степень взаимосвязи, а у коров голштинской породы – слабую отрицательную корреляцию. При этом у всех пород на 1-м месяце лактации отмечена отрицательная средней степени взаимосвязь показателей от r=-0,27 у черно-пестрой до r=-0,44 у голштинской породы. БАСК с жиром и белками молока имеет слабую корреляционную зависимость. При этом у бестужевской породы данная зависимость положительная, у чернопестрой и голштинской пород с МДЖ в молоке отрицательная, а с МДБ и казеином положительная. Лизоцимная активность сыворотки крови (ЛАСК) в первый день после отела и в течение первого месяца лактации у всех пород имела с жиром и белками молока средней степени (r=-0,40-0,51) отрицательную корреляцию. Далее, с 3-го месяца лактации, отрицательная корреляция менялась на положительную, которая сохранялась до запуска коров, за исключением черно-пестрой породы, у которой с 5-го месяца лактации корреляция снова становилась отрицательной. Корреляция ЛАСК со среднесуточным удоем у всех пород слабо отрицательная, а с удоем за 305 дней лактации у бестужевской и голштинской пород слабоположительная, а у черно-пестрой слабо отрицательная. С МДЖ молока у коров изучаемых пород ЛАСК имела слабую отрицательную корреляцию, а с МДБ молока и казеином взаимосвязь была также слабой, но положительной.

Фагоцитарная активность нейтрофилов крови (ФАНК) с величиной удоя по месяцам лактации имела криволинейную динамику коэффициента корреляции (табл. 1).

Таблица 1 Коэффициенты корреляции между показателями естественной резистентности и молока у коров изучаемых пород

	у поров ису пород											
Показатели	Показатели Удой						Средне-	Удой за				
естественной	Месяц лактации				суточный	305	МДЖ	МДБ	Казеин			
резистентности	После отела	1	3	5	7	9	удой	дней				
Бестужевская порода												
БАСК	-0,15	-0,31	0,27	0,22	0,29	0,19	0,18	0,23	0,13	0,20	0,16	
ЛАСК	-0,23	-0,42	0,12	0,18	0,23	0,27	-0,03	0,12	-0,29	0,19	0,24	
ФАНК	-0,29	-0,47	-0,33	-0,07	0,16	0,11	-0,29	-0,33	-0,11	-0,08	-0,03	
Черно-пестрая порода												
БАСК	-0,21	-0,27	0,09	0,13	0,06	0,16	0,10	0,14	-0,08	0,11	0,07	
ЛАСК	-0,34	-0,51	0,29	-0,12	-0,09	-0,03	-0,14	-0,18	-0,10	0,13	0,09	
ФАНК	-0,25	-0,49	-0,36	-0,09	0,13	-0,08	-0,30	-0,31	-0,16	-0,12	-0,08	
Голштинская порода												
БАСК	-0,30	-0,44	-0,18	-0,07	-0,03	0,19	-0,23	-0,19	-0,13	0,06	0,05	
ЛАСК	-0,26	-0,40	0,11	0,09	0,16	0,17	-0,08	0,10	-0,11	0,09	0,11	
ФАНК	-0,34	-0,53	-0,39	-0,12	-0,03	0,14	-0,31	-0,36	-0,18	-0,10	-0,06	

Установлено, что после отела корреляция между показателями была слабой и отрицательной. По мере увеличения удоев до 3-го месяца лактации ФАНК уменьшалась, что обусловило между ними отрицательную взаимосвязь средней степени. Самая сильная взаимосвязь отмечена через месяц после отела, которая колебалась от r=-0,47 (бестужевская порода) до r=-0,53 (голштинская порода). У бестужевской породы с 7-го месяца лактации отрицательная корреляция менялась на слабоположительную, у черно-пестрой породы с 9-го месяца она снова становилась отрицательной, а у голштинской породы до 7-го месяца корреляция между показателями была слабоотрицательной, а на 9-м месяце менялась на положительную. ФАНК со среднесуточным удоем и удоем за 305 дней лактации у всех пород имела средней степени отрицательную корреляцию. ФАНК с молочным жиром и белками молока имела слабую отрицательную взаимосвязь.

Заключение. Установлено, что и клеточные и гуморальные факторы, характеризующие естественную резистентность организма, являются очень лабильными как между породами, так и внутри каждой изучаемой породы. Они могут уменьшаться или увеличиваться как параллельно, так и компенсируя друг друга. Практическое значение корреляции между признаками заключается в том, что они позволяют при отборе и подборе родительских пар не только усиливать действие положительных качеств, ослабляя нежелательные, но и, при наличии положительной связи, вести селекцию по меньшему числу признаков, что намного проще и эффективнее. В этом случае значительно ускоряются темпы генетического совершенствования стад.

Библиографический список

- 1. Коханов, А. П. Взаимосвязь хозяйственно-полезных признаков в стаде чёрно-пёстрого скота / А. П. Коханов, А. И. Сивков, Н. В. Журавлёв // Сб. науч. тр. Волгоградской ГСХА. Волгоград : ВГСХА, 2006. С. 65-66.
- 2. Коханов, А. П. Племенное дело в скотоводстве : монография / А. П. Коханов, М. А. Коханов. Волгоград : ВГСХА, 2010. 144 с.
- 3. Коровин, А. В. Показатели естественной резистентности коров разных пород / А. В. Коровин, А. С. Карамаева, С. В. Карамаев // Материалы науч. конф. с междунар. участием Башкирского ГАУ. Уфа : БашГАУ, 2012. С. 51-54.
- 4. Лазаренко, В. Н. Корреляционная связь между некоторыми хозяйственно-полезными признаками овец Южного Урала / В. Н. Лазаренко, А. Н. Галатов // Технологические проблемы молочно-мясного скотоводства в зоне Южного Урала : мат. междунар. науч.-практ. конф. Троицк : УГИВМ, 2008. С. 36-37.
- 5. Мохов, Б. П. Продуктивность и состояние резистентности импортных и местных первотёлок / Б. П. Мохов, Е. П. Савельева // Зоотехния. 2010. №6. С. 9-10.
- 6. Валитов, Х. 3. Продуктивное долголетие коров в условиях интенсивной технологии производства молока: монография / Х. 3. Валитов, С. В. Карамаев. Самара: РИЦ СГСХА, 2012. 322 с.
- 7. Карамаева, А. С. Морфо-биохимический статус крови телят молочного периода в зависимости от породы // Известия Самарской государственной сельскохозяйственной академии. 2012. №1. С. 146-150.
- 8. Яковлева, О. А. Оценка корреляций между селекционными признаками у коров // Зоотехния. 1998. №5. С. 5-7.
- 9. Карамаев, С. В. Научные и практические аспекты интенсификации производства молока : монография / С. В. Карамаев, Е. А. Китаев, Х. З. Валитов. Самара : РИЦ СГСХА, 2009. 252 с.
- 10. Карамаев, С. В. Адаптационные особенности молочных пород скота: монография / С. В. Карамаев, Г. М. Топурия, Л. Н. Бакаева, Е. А. Китаев, А. С. Карамаева. Самара: РИЦ СГСХА, 2013. 195 с.

УДК 636.22/28.082.26

ЭТОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ГОЛШТИНИЗИРОВАННЫХ КОРОВ БЕСТУЖЕВСКОЙ ПОРОДЫ В ЗАВИСИМОСТИ ОТ СЕЗОНА ГОДА

Китаев Евгений Александрович, канд. с.-х. наук, доцент кафедры «Технология производства продуктов животноводства», ФГБОУ ВПО Самарская ГСХА.

446442, Самарская область, п.г.т. Усть-Кинельский, ул. Учебная, 2.

E-mail: KaramaevSV@mail.ru

Григорьев Василий Семёнович, д-р биол. наук, проф. кафедры «Эпизоотология, патология и фармакология», ФГБОУ ВПО Самарская ГСХА.

446442, Самарская область, п.г.т. Усть-Кинельский, ул. Учебная, 2.

E-mail: grig.vs@mail.ru

Ключевые слова: этология, порода, скрещивание, хронометраж, сезон, год.

В работе основной целью исследований являлось совершенствование технологии содержания коров бестужевской породы с разной долей крови голштинов в условиях промышленного комплекса. В опыте использовали помесных коров бестужевской породы, выведенных с использованием разных методов скрещивания с голштинскими и помесными быками с долей крови от 25 до 93,8%. Исследования проводили на современном молочном комплексе ОПХ «Красногорское» Самарской области. Этологическую реактивность коров в опытных группах исследовали методом хронометражных наблюдений за два смежных дня по рекомендациям В. И. Великжанина. Пищевая активность животных в зимний период, по сравнению с летним, была выше. Коровы подходили к кормовому столу в зимние месяцы 10,6-12,4 раза за сутки, в летние – 10,2-11,9 раза. Меньше всего подходов к кормовому столу было у помесей в группе от возвратного скрещивания, больше всего – от поглотительного скрещивания. При этом на потребление корма в среднем за один подход в зимнее время помеси от вводного скрещивания затрачивали 40,0-37,7 мин, от возвратного — 35.8-37.7 мин. воспроизводительного — 37.3-38.5 мин. поглотительного — 39.4 мин; в летнее время, соответственно 34,6-35,8; 34,3-34,5; 35,5-36,3; 36,2 мин. Таким образом, в летний период животные всех без исключения генотипов реже подходили к кормовому столу и меньше затрачивали времени на поедание корма, чем в зимний период. Наблюдения показали, что животные после потребления корма некоторое время передвигаются по секции, как бы выбирая наиболее удобное место для отдыха, останавливаются, стоят неподвижно, после чего начинается жвачка. Жвачка у коров в большинстве случаев начинается в положении стоя, а заканчивается в положении лёжа.

При современной интенсивной технологии беспастбищного содержания животных в замкнутом пространстве комплекса с чрезмерно высокой эксплуатацией молочной железы, меняются эволюционно сложившиеся биологические особенности крупного рогатого скота. В результате, в новых условиях содержания изменяются ранговые отношения, воспроизводительные и поведенческие функции, что зачастую отрицательно сказывается на резистентности организма, устойчивости к заболеваниям и адаптации коров к новым природно-климатическим условиям [1, 2, 3]. В таких сложных производственных условиях крупные дойные