Научная статья УДК 57:579:579.6:579.62 DOI: 10.55170/1997-3225-2025-10-1-71-78

ОПТИМИЗАЦИЯ МИКРОФЛОРЫ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА МОЛОДНЯКА ОВЕЦ ПОСРЕДСТВОМ BACILLUS AMYLOLIQUEFACIENS

Галина Васильевна Молянова ^{1⊠}, Владимир Викторович Ермаков ²

- 1, 2 Самарский государственный аграрный университет, Усть-Кинельский, Самарская область, Россия
- ¹ molyanova@yandex.ru, http://orcid.org/0000-0003-1325-6809
- ² vladimir_21_2010@mail.ru, http://orcid.org/0000-0002-6683-0512

Резюме. Целью исследования является оптимизация микрофлоры желудочно-кишечного тракта молодняка овец посредством применения пробиотика на основе сапрофитных бацилообразующих бактерий Bacillus amyloliquefaciens. Новый пробиотик построен на основе живых бактерий Bacillus amyloliquefaciens ВКПМ В-11475 в концентрации 4×109 КОЕ в форме суспензии. Исследования проводили на молодняке овец куйбышевской породы. Опытным животным к основному рациону дополнительно давали споробактерин и новый пробиотик на основе Bacillus amyloliquefaciens. Дополнение к основному рациону споробактерина и пробиотика на основе Bacillus amyloliquefaciens оказало выраженный положительный эффект на овец с рождения и до достижения 180 дневного возраста. Популяция полезных микробов в желудочно-кишечном тракте молодняка овец энтерококков, бифидобактерий, лактобацилл, бацилл Bacillus subtilis и Bacillus amyloliquefaciens как в количественном выражении, так и в функциональном плане была у опытных животных оптимальной и конкурентно способной. При этом зафиксировано, что применение пробиотика на основе Bacillus amyloliquefaciens показало наилучший эффект.

Ключевые слова: молодняк овец, микробы, микрофлора, бациллы, микрофлора, Bacillus amyloliquefaciens.

Для цитирования: Молянова Г. В., Ермаков В. В. Оптимизация микрофлоры желудочно-кишечного тракта молодняка овец посредством *Bacillus amyloliquefaciens* // Известия Самарской государственной сельскохозяйственной академии. 2025. Т. 10, № 1. С. 71-78. DOI: 10.55170/1997-3225-2025-10-1-71-78

Original aticle

OPTIMIZATION OF THE MICROFLORA OF THE GASTROINTESTINAL TRACT OF YOUNG SHEEP BY BACILLUS AMYLOLIQUEFACIENS

Galina V. Molyanova ^{1⊠}, Vladimir V. Ermakov ²

- 1,2 Samara State Agrarian University, Ust-Kinelsky, Samara region, Russia
- 1 molyanova@yandex.ru, http://orcid.org/0000-0003-1325-6809
- ² vladimir_21_2010@mail.ru, http://orcid.org/0000-0002-6683-0512

Abstract. The aim of the study is to optimize the microflora of the gastrointestinal tract of young sheep by using a probiotic based on saprophytic Bacillus amyloliquefaciens Bacillus Bacillus. The new probiotic is based on the live bacteria *Bacillus amyloliquefaciens* VKPM B-11475 at a concentration of 4×109 CFU in suspension form. The research was carried out on young sheep of the Kuibyshev breed. The experimental animals were supplemented with sporobacterin and a new probiotic based on Bacillus amyloliquefaciens. The addition of sporobacterin and a probiotic based on Bacillus amyloliquefaciens to the basic diet had a pronounced positive effect on sheep from birth to the age of 180 days. The population of beneficial microbes in the gastrointestinal tract of young sheep, enterococcus, bifidobacteria, lactobacilli, *Bacillus subtilis* and *Bacillus amyloliquefaciens*, both quantitatively and functionally, was optimal and competitively capable in experimental animals. At the same time, it was found that the use of a probiotic based on Bacillus amyloliquefaciens showed the best effect.

Keywords: young sheep, microbes, microflora, bacilli, microflora, Bacillus amyloliquefaciens

For citation: Molyanova, G. V. & Ermakov, V. V. (2025). Optimization of the microflora of the gastrointestinal tract of young sheep by Bacillus amyloliquefaciens. *Izvestiia Samarskoi gosudarstvennoi selskokhoziaistvennoi akademii (Bulletin Samara State Agricultural Academy)*, 10, 1, 71-78 (in Russ). DOI: 10.55170/1997-3225-2025-10-1-71-78

Сегодня известно, что долголетие и высокая продуктивность животных основаны на постоянстве и функциональной деятельности полезной микрофлоры. Одним из компонентов нормофлоры организма животных и человека являются сапрофитные бациллы. Среди них большую пользу организму приносят бациллы, широко распространенные в окружающей среде [1, 2, 4]. Бациллы сапрофиты используются в производстве препаратов для

© Молянова Г.В., Ермаков В. В., 2025

медицины, ветеринарии, животноводства и растениеводства. В линейке подобных препаратов особое место занимают средства на основе Bacillus subtilis и Bacillus amyloliquefaciens [5, 11].

Сапрофитные бациллы наряду с энтерококками выполняют особо важную роль в организме человека и животных. Бациллы способствуют активации биологических свойств антагонистически активных бифидобактерий, лактобацилл и энтерококков [8, 11].

Зафиксировано видовое многообразие культур энтерококков, выделенных из кишечной микрофлоры животных, среди них Enterococcus faecalis, Enterococcus faecium и другие виды. Энтерококки обладают факторами персистенции. Существенный вклад в длительное переживание в организме хозяина бактерий, колонизирующих слизистые оболочки вносят антилизоцимная, антикарнозиновая активность и способность к биопленкообразованию. Микробная биопленка является важным фактором сохранении нормоффлоры при осуществлении ею колонизационной резистентности различных биотопов организма хозяина [10, 12, 13].

Энтерококки обладают выраженной протеолитической и антагонистической активностью [10, 12]. Основными продуцентами протеолитических ферментов являются бактерии рода Bacillus, Lactobacillus, Bifidobacterium и некоторые другие молочнокислые микробы [10, 13].

Некоторые виды бактерий рода Bacillus, такие как Bacillus amyloliquefaciens, обладают выраженной антибактериальной, противогрибковой, антиоксидантной активностью, поскольку продуцируют антимикробные метаболиты и широко распространены в окружающей среде [6, 8, 11].

В связи с вышеобознаенным, изучение применения в овцеводстве пробиотика на основе Bacillus amyloliquefaciens является особо актуальной темой.

Цель исследований — оптимизация микрофлоры желудочно-кишечного тракта молодняка овец посредством применения пробиотика на основе сапрофитных бацилообразующих бактерий Bacillus amyloliquefaciens.

Исходя из цели исследований, были поставлены следующие **задачи** — выявление и определение принадлежности микрофлоры желудочно-кишечного тракта; анализ морфологических, тинкториальных, культуральных, биохимических, серологических свойств микробов; определение факторов патогенности и персистенции микробов.

Материал и методы исследований. В процессе исследований применялись два микробиологических препарата. Споробактерин состоит из биомассы живых бацилл Bacillus subtilis 534 в концентрации 1×10⁹ КОЕ (колониеобразующие единицы) в форме суспензии. Препарат применяется для профилактики и лечения бактериальные кишечные инфекции, а также для профилактики и лечения осложнений, вызываемых патогенными и условно-патогенными микроорганизмами.

Новый пробиотик построен на основе живых бактерий Bacillus amyloliquefaciens ВКПМ В-11475 в концентрации 4×10⁹ КОЕ в форме суспензии. Препарат оказывает антагонистическое действие в отношении бактериальных и грибных фитопатогенов [6, 7, 8].

Исследования проводили в условиях ООО «Агростар» Похвистневского района Самарской области на молодняке овец куйбышевской породы. Животные были подобранны по принципу пар аналогов по 20 голов в группе. Всего было сформировано три группы животных. Первая группа включала контрольных животных. Вторая группа состояла из опытных животных, которым применяли споробактерин в форме суспензии в дозе 1 мл на голову в сутки. В третьей группе находились опытные животные, которым давали новый пробиотик на основе Bacillus amyloliquefaciens в форме суспензии в дозе 1 мл на голову в сутки. Все животные находились в одинаковых условиях содержании и кормлении. Работу с животными вели в следующие возрастные периоды: в первый день жизни, а далее ежемесячно по достижению животными годовалого возраста.

Материалом для исследований служили фекалии животных. Фекалии использовали для подготовки микробной суспензии. Образцы суспензии с помощью г-образного шпателя высевали на дифференциально-диагностические и элективно-селективные микробиологические среды, в том числе на модифицированный нами лактозый агар Дригальского [3, 9]. Среды с посевным материалом в специальном оборудовании при определенном режиме держали 48-72 часа. Культуры микробов в чистом виде идентифицировали согласно морфологическим, тинкториальным, культуральным, биохимическим, серологическим свойствам. Изучение факторов патогенности и персистентности микробов осуществляли узаконенными методами. Подсчет количества выросших колоний микробов проводили общепринятым методом на специализированном приборе счёта бактерий.

Выявление факторов патогенности и персистенции микроорганизмов осуществляли общепринятыми методами. Антилизоцимную и антикарнозиновую активность определяли фотометрическим методом. Способность микроорганизмов к образованию биоплёнок выявляли по степени связывания микроорганизмами кристаллического фиолетового в полистироловых планшетах.

Статистическую обработку результатов исследований осуществляли с помощью специальных компьютерных программ.

Результаты исследований. Микробы поступают в организм животного с первых минут жизни. В последующем под влиянием многочисленных факторов окружающей среды микрофлора претерпевает видоизменении проходя этапы формирования и обретая окончательно сформировавшуюся по видовому и количественному составу жизненно необходимую для организма микробиоту. В наших исследованиях выявлено, что основными представителями номофлоры желудочно-кишечного тракта молодняка овец явлются энтерококки, бифидобактерии, лактобациллы, энтеробактерии и бациллы, выполняющие многочисленные важные функции в организме животного (табл. 1). При этом патогенных представителей микробного мира в наших исследованиях не было выявлено. Динамика изменения количественного состава микробов обусловлена видовой принадлежностью, спецификой роста и развития организма животного. Количество полезных микробов у молодняка овец возрастает до 180 дня жизни и затем остается стабильным. Дополнение основного рациона молодняка овец споробактерином и пробиотиком на основе Bacillus amyloliquefaciens оказывает положительное влияние на микрофлору желудоно-кишечного тракта овец. Их применение позволяет повысить количество энтерококков, бифидобактерий, лактобацилл, энтеробактерий, Bacillus subtilis и Bacillus amyloliquefaciens. Наибольший эффект был получен от использования пробиотика на основе Bacillus amyloliquefaciens, обладающим целым рядом полезных свойств. Это, прежде всего антагонистическая и литическая, антиоксидантная активность в отношении патогенных микробов, помимо всего это и способность синтезировать полезные биоактивные соединения.

Микробы желудочно-кишечного тракта молодняка овец

Таблица 1

During	Doopoot outsu	Группа животных/Количество микробов, 10 ⁿ			
Виды микробов	Возраст, сутки	Контрольная	Первая опытна	Вторая опытна	
Enterococcus faecium	30	3,87×108±0,12	7,30×108±0,09	4,89×108±0,11	
	180	3,99×108±0,13	7,45×108±0,10	4,99×108±0,08	
Enterococcus faecalis	30	4,49×108±0,21	7,37×108±0,13	5,38×10 ⁸ ±0,11	
Enterococcus raecans	180	4,62×108±0,14	7,52×10 ⁸ ±0,09	5,49×108±0,12	
Enterococcus flavescens	30	1,17×10 ⁸ ±0,04	2,76×108±0,05	1,47×108±0,05	
Enterococcus navescens	180	1,20×10 ⁸ ±0,05	2,81×10 ⁸ ±0,04	1,50×10 ⁸ ±0,03	
Enterococcus casseliflavus	30	0,64×10 ⁸ ±0,04	0,78×10 ⁸ ±0,08	0,97×108±0,09	
Enterococcus casseillavus	180	0,74×108±0,02	0,96×108±0,009	1,08×108±0,05	
Bifidobacterium bifidum	30	4,38×10 ¹⁰ ±0,13	5,41×10 ¹⁰ ±0,21	5,47×10 ¹⁰ ±0,16	
Billuopacterium billuum	180	4,44×10 ¹⁰ ±0,15	5,60×10 ¹⁰ ±0,37	5,58×10 ¹⁰ ±0,15	
Bifidobacterium thermophilum	30	4,47×10 ¹⁰ ±0,11	5,16×10 ¹⁰ ±0,11	5,22×10 ¹⁰ ±0,12	
Billidobacterium thermoprillum	180	4,60×10 ¹⁰ ±0,12	5,34×10 ¹⁰ ±0,17	5,33×10 ¹⁰ ±0,21	
Lactobacillus delbrueckii	30	4,53×10 ¹⁰ ±0,21	5,44×10 ¹⁰ ±0,13	5,95×10 ¹⁰ ±0,14	
Lactobaciilus deibi deckii	180	4,67×10 ¹⁰ ±0,14	4,61×10 ¹⁰ ±0,11	4,05×10 ¹⁰ ±0,09	
Lactobacillus acidophilus	30	4,06×10 ¹⁰ ±0,12	5,27×10 ¹⁰ ±0,12	5,22×10 ¹⁰ ±0,16	
Lactobaciilus acidoprilius	180	4,53×10 ¹⁰ ±0,09	5,43×10 ¹⁰ ±0,15	5,33×10 ¹⁰ ±0,11	
Escherichia coli	30	7,32×10 ⁶ ±0,20	5,78×10 ⁶ ±0,13	6,77×10 ⁶ ±0,22	
Escrienciia con	180	6,29×10 ⁶ ±0,32	4,89×10 ⁶ ±0,25	5,93×10 ⁶ ±0,31	
Serratia marcescens	30	2,38×10 ⁴ ±0,10	2,53×10 ⁴ ±0,14	3,44×10 ⁴ ±0,18	
Serralia marcescens	180	2,54×10 ⁴ ±0,12	2,78×10 ⁴ ±0,16	3,82×10 ⁴ ±0,22	
Citrobacter freundii	30	2,28×10 ⁴ ±0,09	2,64×10 ⁴ ±0,10	2,68×10 ⁴ ±0,14	
Citrobacter freuridii	180	2,34×10 ⁴ ±0,14	3,18×10 ⁴ ±0,18	4,06×10 ⁴ ±0,16	
Enterobacter cloacae	30	5,08×10 ⁴ ±0,16	4,36×10 ⁴ ±0,18	4,08×10 ⁴ ±0,12	
Enteropacier cloacae	180	6,18×10 ⁴ ±0,32	5,12×10 ⁴ ±0,20	4,16×10 ⁴ ±0,14	
Erwinia amylovora	30	3,10×10 ⁴ ±0,12	3,12×10 ⁴ ±0,16	2,28×10 ⁴ ±0,14	
	180	3,84×10 ⁴ ±0,06	4,62×10 ⁴ ±0,24	3,42×10 ⁴ ±0,08	
Bacillus subtilis	30	2,15×10 ⁴ ±0,08	3,44×10 ⁴ ±0,22	4,62×10 ⁴ ±0,36	
Dacillus Subtilis	180	2,84×10 ⁴ ±0,06	4,72×10 ⁴ ±0,14	3,46×10 ⁴ ±0,10	
Bacillus amyloliquefaciens	30	0,32×10 ⁴ ±0,04	1,14×10 ⁴ ±0,08	3,88×10 ⁴ ±0,14	
Dacillus attiyloliquetacietis	180	0,38×10 ⁴ ±0,02	0,84×10 ⁴ ±0,06	5,12×10 ⁴ ±0,18	
Bacillus mycoides	30	0,26×10 ⁴ ±0,06	0,62×10 ⁴ ±0,08	0,32×10 ⁴ ±0,04	
Dacillus Hiycoldes	180	1,12×10 ⁴ ±0,08	0,68×10 ⁴ ±0,06	0,44×10 ⁴ ±0,06	
Bacillus cereus	30	0,34×10 ⁴ ±0,04	0,56×10 ⁴ ±0,06	0,46×10 ⁴ ±0,08	
Bacillus cereus	180	0,48×10 ⁴ ±0,03	0,42×10 ⁴ ±0,05	0,52×10 ⁴ ±0,10	

В ходе всей жизни с грубыми и сочными кормами овцы потребляют большое количество спор и клеток мицелия почвенных грибов, многие из которых способны синтезировать различные микотоксины. В ходе исследований установлено наличие в желудочно-кишечном тракте молодняка овец спор и клеток мицелия грибов рода

Penicillium, Aspergillus и Mucor (табл. 2). Благодаря выраженному противогрибковому действию введение в организм молодняка овец Bacillus subtilis и особенно Bacillus amyloliquefaciens позволило существенно снизить количество грибов в желудочно-кишечном тракте животных опытных групп.

Таблица 2

Грибы в желудочно-кишечном тракте молодняка овец

Виды микробов	POODOOT OVER	Группа животных/ Количество микробов, 10 ⁿ			
	Возраст, сутки	Контрольная	Первая опытна	Вторая опытна	
Penicillium notatum —	30	5,06×10 ² ±0,08	2,14×10 ² ±0,06	1,06×10 ² ±0,02	
	180	7,42×10 ² ±0,12	3,08×10 ² ±0,05	0,82×10 ² ±0,06	
Aspergillus niger	30	6,18×10 ² ±0,14	2,36×10 ² ±0,10	0,44×10 ² ±0,08	
	180	6,74×10 ² ±0,18	2,68×10 ² ±0,14	0,38×10 ² ±0,12	
Mucor racemosus	30	0,82×10 ² ±0,06	0,56×10 ² ±0,04	0,24×10 ² ±0,02	
	180	1,38×10 ² ±0,05	0,66×10 ² ±0,07	0,14×10 ² ±0,02	

Синтез протеолитических ферментов энтерококками, бифидобактериями, лактобациллами, бациллами Bacillus subtilis и Bacillus amyloliquefaciens позволяет этим микробам провлть высокую антагонистическую активность в отношении патогенных бактерий и грибов. Это позволяет сохранять полезную микрофлору, поддерживать активный метаболизм, постоянство внутренней среды организма, рост и развитие животных. Наибольшая протеолитическая активность в наших исследованиях зафиксирована в опытных группах животных, особенно при даче пробиотика на основе Bacillus amyloliquefaciens (табл. 3).

Протеолитическая активность микробов

Таблица 3

Виды микробов	Poopoot OUTINA	Группа животных/протеолитическая активность, мг×мл/мин			
	Возраст, сутки	Контрольная	Первая опытна	Вторая опытна	
Enterococcus faecium	30	0,48±0,004	0,54±0,003	0,66±0,004	
Enterococcus faecium	180	0,54±0,003	0,62±0,004	0,88±0,005	
Enterococcus faecalis	30	0,52±0,002	0,74±0,006	0,92±0,008	
Enterococcus faecalis	180	0,62±0,003	0,78±0,004	1,08±0,006	
Enterococcus flavescens	30	0,36±0,002	0,44±0,006	0,62±0,004	
Enterococcus navescens	180	0,44±0,004	0,62±0,008	0,80±0,006	
Enterococcus casseliflavus	30	0,28±0,002	0,34±0,006	0,44±0,009	
Enterococcus casseillavus	180	0,32±0,003	0,46±0,005	0,52±0,005	
Bifidobacterium bifidum	30	0,36±0,002	0,62±0,006	0,78±0,006	
Billuopacterium billuum	180	0,44±0,004	0,74±0,008	0,92±0,008	
Difidohoatarium thormonbilum	30	0,38±0,002	0,44±0,005	0,64±0,003	
Bifidobacterium thermophilum	180	0,52±0,006	0,68±0,003	0,84±0,007	
Lactobacillus delbrueckii	30	0,74±0,004	0,82±0,006	1,12±0,004	
Lactobaciilus deibi deckii	180	0,92±0,005	1,18±0,008	1,48±0,005	
Lactobacillus acidophilus	30	0,88±0,003	0,96±0,007	2,08±0,012	
Lactobaciilus acidoprilius	180	0,96±0,004	1,20±0,12	1,68±0,009	
Escherichia coli	30	0,68±0,006	0,74±0,10	1,92±0,008	
Escherichia con	180	0,76±0,003	0,86±0,008	0,94±0,005	
Bacillus subtilis	30	0,88±0,008	0,96±0,005	0,98±0,005	
Dacillus Subtilis	180	0,94±0,007	1,12±0,010	1,46±0,016	
Desillus assulation of acien-	30	0,75±0,005	0,84±0,014	1,68±0,012	
Bacillus amyloliquefaciens	180	0,96±0,006	1,24±0,008	1,72±0,013	
Desillus museides	30	0,70±0,004	0,87±0,010	1,98±0,018	
Bacillus mycoides	180	0,76±0,003	0,98±0,006	2,12±0,015	
Bacillus cereus	30	0,92±0,004	1,16±0,014	2,48±0,013	
Bacillus cereus	180	1,08±0,002	1,34±0,016	2,78±0,017	

Энтерококки, бифидобактерии, лактобациллы, бациллы Bacillus subtilis и Bacillus amyloliquefaciens обладают антилизоцимной активностью, что позволяет им сохранить свою популяцию в неблагоприятных для них условиях желудочно-кишечного тракта. В наших исследованиях определено, что наибольшие показатели антилизоцимной активности наблюдались у данных микробов у животных опытных групп (табл. 4). Дополнение основного рациона молодняка овец пробиотиком на основе Bacillus amyloliquefaciens позволяет получить наибольшие значения показателей антилизоцимной активности у полезной микрофлоры, что позволяет ей проявлять конкурентное преимущество перед патогенными и менее полезными микробами.

Таблица 4

Антилизоцимная активность микробов

Риди микробор	Poopoot over	Группа животны	вотных/антилизоцимная активность, мкг/мл ед		
Виды микробов	Возраст, сутки	Контрольная	Первая опытна	Вторая опытна	
Enteresessus feesium	30	2,32±0,016	2,46±0,018	2,68±0,020	
Enterococcus faecium	180	2,44±0,012	2,58±0,020	2,84±0,022	
Enterococcus faecalis	30	2,18±0,014	2,62±0,024	3,18±0,024	
Enterococcus raecans	180	2,32±0,015	2,88±0,028	3,42±0,028	
Enterococcus flavescens	30	1,34±0,012	1,64±0,016	2,08±0,018	
Enterococcus navescens	180	1,48±0,014	1,86±0,014	2,16±0,016	
Enterese seus sesselificaries	30	1,08±0,010	1,12±0,008	2,22±0,014	
Enterococcus casseliflavus	180	1,12±0,008	1,24±0,006	2,48±0,018	
Difidahaatarium hifidum	30	2,24±0,012	2,38±0,007	2,54±0,018	
Bifidobacterium bifidum	180	2,36±0,014	2,74±0,009	3,02±0,020	
Difidohaatarium thormanhilum	30	2,12±0,016	2,44±0,007	2,68±0,015	
Bifidobacterium thermophilum	180	2,44±0,018	2,60±0,008	2,74±0,017	
Lactobacillus delbrueckii	30	2,36±0,012	2,44±0,006	2,60±0,016	
Lactobacillus delbrueckii	180	2,48±0,016	2,66±0,008	2,86±0,018	
Lastabasillus asidanhilus	30	2,08±0,010	2,14±0,009	2,68±0,014	
Lactobacillus acidophilus	180	2,26±0,014	2,78±0,012	3,34±0,022	
Escherichia coli	30	3,48±0,016	3,08±0,006	3,12±0,018	
Escrienchia con	180	4,32±0,032	3,12±0,008	3,28±0,026	
Bacillus subtilis	30	3,62±0,012	3,84±0,004	3,98±0,024	
Dacillus subtilis	180	3,74±0,016	4,06±0,012	3,88±0,022	
Pacillus amylaliquefacions	30	4,08±0,020	4,16±0,010	4,10±0,018	
Bacillus amyloliquefaciens	180	4,42±0,026	4,74±0,014	4,68±0,012	
Pacillus myssides	30	4,18±0,018	4,32±0,016	3,18±0,026	
Bacillus mycoides	180	4,30±0,020	4,70±0,018	3,62±0,018	
Pacillus corous	30	4,64±0,024	4,84±0,014	3,44±0,015	
Bacillus cereus	180	4,82±0,003	5,13±0,017	3,62±0,019	

Защитить себя и сохранить свою популяцию в желудочно-кишечном тракте полезным микробам позволяет не только антилизоцимная, но и антикарнозиновая активность. Дополнение основного рациона молодняка овец пробиотиками способствовало получению более высоких показателей антикарнозиновой активности у полезных микробов животных опытных групп (табл. 5). Оптимальный эффект в этом отношении был получен от применения пробиотика на основе Bacillus amyloliquefaciens.

Антикарнозиновая активность микробов

Таблица 5

Виды микробов	Возраст, сутки	Группа животных/антикарнозиновая активность, мг/мл		
		Контрольная	Первая опытна	Вторая опытна
1	2	3	4	5
Enterococcus faecium	30	2,64±0,014	2,83±0,016	3,04±0,018
Enterococcus raecium	180	2,76±0,013	2,88±0,022	3,14±0,016
Enterococcus faecalis	30	2,44±0,012	2,65±0,016	2,96±0,020
Enterococcus faecalis	180	2,60±0,014	2,84±0,014	3,08±0,022
Enterococcus flavescens	30	1,40±0,008	1,66±0,008	2,06±0,016
Enterococcus navescens	180	1,52±0,010	1,74±0,006	2,18±0,014
Enterace acus acceptificana	30	1,22±0,006	1,42±0,005	1,74±0,010
Enterococcus casseliflavus	180	1,28±0,007	1,64±0,009	1,88±0,012
Difidohootorium hifidum	30	2,33±0,013	2,58±0,016	2,74±0,015
Bifidobacterium bifidum	180	2,64±0,016	2,70±0,020	2,86±0,013
Difidahaatarium tharmanhilum	30	2,40±0,018	2,56±0,018	2,65±0,018
Bifidobacterium thermophilum	180	2,68±0,014	2,88±0,022	3,10±0,016
Lastabasillus dalbrusakii	30	2,44±0,015	2,66±0,024	2,84±0,022
Lactobacillus delbrueckii	180	2,62±0,018	2,94±0,020	3,38±0,026
Lactobacillus acidophilus	30	2,54±0,024	2,68±0,017	2,94±0,030
	180	2,72±0,026	2,73±0,023	3,62±0,036

Окончание таблицы 5

1	2	3	4	5
Fachariahia asli	30	3,12±0,022	3,42±0,033	3,24±0,023
Escherichia coli	180	3,84±0,040	4,18±0,040	4,06±0,027
Bacillus subtilis	30	3,72±0,033	4,32±0,046	4,12±0,030
Daciilus subtilis	180	3,80±0,036	4,64±0,052	4,70±0,026
Pacillus amylaliquafacions	30	4,12±0,018	4,34±0,028	4,46±0,022
Bacillus amyloliquefaciens	180	4,28±0,016	4,52±0,017	4,52±0,030
Bacillus mycoides	30	4,34±0,017	4,58±0,021	4,38±0,027
	180	4,64±0,024	4,72±0,026	4,68±0,025
Bacillus cereus	30	4,78±0,028	5,12±0,036	4,80±0,018
	180	4,86±0,034	5,26±0,034	5,02±0,030

Микробы, чтобы закрепиться на определенном участке среды и создать там свою популяцию, которая сможет длительное время жить и функционировать, прибегают к образованию микробных сообществ, в том числе с условно-патогенными микробами, так называемыми биопленками. В результате наших исследований зафиксировано, что более высокие показатели биопленкообразования у полезных микробов наблюдаются в организме опытных животных. Наилучший результат в этом плане получен при использовании пробиотика на основе Bacillus amyloliquefaciens (табл. 6).

Способность создавать биопленки у микробов

Таблица 6

Виды микробов	Возраст, сутки	Группа животных/биопленкообразование, %		
Биды микрооов	Dospaci, Cylkii	Контрольная	Первая опытна	Вторая опытна
Enterococcus faecium	30	24,36±1,36	26,24±1,82	28,08±3,12
Enterococcus faecium	180	26,30±1,42	28,12±1,60	33,16±3,08
Enterococcus faecalis	30	21,08±1,30	23,18±1,44	27,42±2,88
Enterococcus faecalis	180	23,44±1,28	27,32±1,56	30,18±2,92
Enterococcus flavescens	30	19,74±1,42	23,82±1,62	25,62±3,18
Enterococcus navescens	180	22,34±1,54	26,18±1,74	30,42±3,50
Entergos como consoliflorum	30	18,07±1,12	22,44±1,80	25,72±3,12
Enterococcus casseliflavus	180	20,16±1,44	24,58±1,94	27,84±3,06
Bifidobacterium bifidum	30	32,44±2,08	35,18±1,18	37,48±4,02
Billobacterium billoum	180	35,62±2,64	37,22±1,44	40,16±4,12
Diffidah actorium tharmanhilum	30	34,16±2,24	36,48±2,08	44,18±4,22
Bifidobacterium thermophilum	180	36,12±2,48	40,52±3,12	52,62±4,62
Lactobacillus delbrueckii	30	30,64±2,64	33,08±2,66	56,74±5,16
Lactobaciilus deibi deckii	180	34,72±3,08	35,46±2,24	58,12±6,08
Lastabasillus asidanhilus	30	35,82±2,84	37,50±2,70	54,16±6,24
Lactobacillus acidophilus	180	37,14±3,52	39,82±3,18	56,18±6,84
Escherichia coli	30	38,44±3,62	41,54±3,62	46,32±4,18
Escriencina con	180	43,52±4,08	45,15±3,40	48,24±3,88
Bacillus subtilis	30	36,12±2,44	38,56±2,62	40,28±4,32
Dacillus subtilis	180	40,48±2,63	44,13±2,80	49,12±4,83
Pacillus amylaliquefecions	30	38,44±2,52	41,53±2,12	55,70±4,66
Bacillus amyloliquefaciens	180	41,12±2,72	44,80±4,18	59,22±4,15
Bacillus mysoidos	30	30,16±2,26	33,06±2,24	37,02±4,33
Bacillus mycoides	180	33,18±3,14	37,18±3,85	39,15±4,72
Bacillus cereus	30	34,42±1,88	34,16±4,02	35,13±3,92
Bacillus cereus	180	36,72±,26	39,80±4,16	41,04±4,07

Заключение. Дополнение к основному рациону споробактерина и пробиотика на основе Bacillus amyloliquefaciens оказало выраженный положительный эффект на овец с рождения и по достижению 180 дневного возраста. Популяция полезных микробов в желудочно-кишечном тракте молодняка овец энтерококков, бифидобактерий, лактобацилл, бацилл Bacillus subtilis и Bacillus amyloliquefaciens как в количественном выражении, так и в функциональном плане была у опытных животных наиболее оптимальной и конкурентно способной. При этом зафиксировано, что применение пробиотика на основе Bacillus amyloliquefaciens дало наилучший эффект.

Список источников

- 1. Васильев Н. В. Профилактические мероприятия эшерихиоза молодняка крупного рогатого скота в Ставропольском крае: автореф. дисертации ... кандидата ветеринарных наук: 06.02.02 / Васильев Никита Владимирович. Ставрополь, 2017. 22 с. EDN: ZQEPOP
- 2. Габидуллин Ю. 3. Особенности некоторых свойств, определяющих патогенный потенциал сокультивируемых вариаций бактерий Enterobacter, Citrobacter, Serratia, E. coli, Proteus: автореф. дис. ... д-ра медицинских наук: 03.02.03 / Габидуллин Юлай Зайнуллович. Юж.-Ур. гос. мед. ун-т. Челябинск, 2015. 22 с. EDN: ZPWLXX
- 3. Ермаков В. В. Совершенствование рецептуры питательной среды лактозного агара Дригальского : монография / В.В. Ермаков. Кинель : ИБЦ Самарского ГАУ, 2022. 143с. EDN: DHLVGX
- 4. Калашникова В. А., Султанова О. А. Мониторинг кишечных заболеваний и анализ спектра кишечной микрофлоры у обезьян // Ветеринария и кормление. 2018. № 1. С. 37-39. EDN: YQVLTS
- 5. Лукьянчикова Е., Шеламова С. Оптимизация микрофлоры кишечника путь к повышению продуктивности // Свиноводство. 2016. № 3. С. 65-67. EDN: VVWPAP
- 6. Молянова Г.В., Семкина О.В., Статенко Б.И., Винокурова А.П. Биохимические параметры крови козлят зааненской породы при применении препарата на основе Bacillus amyloliquefaciens // Известия Самарской государственной сельскохозяйственной академии. 2023. №4. С. 79-86. DOI: 10.55170/19973225 EDN: HZLFJN
- 7. Молянова Г. В., Ермаков В. В., Акулова И. А. Действие экспериментального синбиотика БЛЭД-1 в комплексе с дигидрокверцетином на микрофлору кишечника служебных собак // Известия Самарской государственной сельскохозяйственной академии. 2019. № 3. С. 70-77. DOI: 10.12737/issn.1997-3225 EDN: CAGPRQ
- 8. Молянова Г. В., Ермаков В. В., Семкина О. В., Винокурова А. П. Воздействие *Bacillus amyloliquefaciens* на организм коз // Известия Самарской государственной сельскохозйственной академии. 2024. № 3 (75). С. 101-107. DOI: 10.55170/1997-3225-2024-9-3-101-107 EDN: GMIJYL
- 9. Патент № 163081 Российская Федерация, МПК С12М 1/14, А 61В 10/02 Одноразовый стерильный микробиологический г-образный шпатель / Ермаков В.В. № 2016100537/14; заявл.11.01.2016; опубл.10.07.2016, Бюл. № 19.
- 10. Пашкова Т. М. Роль факторов персистенции условно-патогенных микроорганизмов в инфекционном процессе: автореф. дис. ... доктора биологических наук: 06.02.02 / Пашкова Татьяна Михайловна. Уфа, 2018. 44 с. EDN: TYURDK
- 11. Самойленко В. С., Ожередова Н. А., Светлакова Е. В. Влияние опытного образца синбиотического средства на микробиоценоз желудочно-кишечного тракта телят в раннем постнатальном онтогенезе // Ветеринарная патология. 2021. № 2 (76). С. 53-58. DOI: 10.25690/VETPAT.2021.38.70.009 EDN: QDAUWL
- 12. Сычева М. В. Биологические эффекты антимикробных веществ животного и бактериального происхождения: автореф. дис. ... доктора биологических наук: 06.02.02 / Сычева Мария Викторовна. Уфа, 2016. 48 с. EDN: THHWNF
- 13. Щепитова Н. Е., Сычева М. В., Карташова О. Л. Биологические свойства антагонистически активных энтерококков кишечной микрофлоры животных // Вестник Оренбургского государственного университета. 2014. № 13 (174). С. 134-138. EDN: TUVJHN

References

- 1. Vasiliev, N. V. (2017). Preventive measures of escherichiosis of young cattle in the Stavropol territory (Doctoral dissertation, Nikita V. Vasiliev). (in Russ.).
- 2. Gabidullin, Yu. Z. (2015). Features of some properties that determine the pathogenic potential of co-cultured varieties of Enterobacter, Citrobacter, Serratia, E. Coli, Proteus (Doctoral dissertation, South-Ural State Medical University). un-t). (in Russ.).
- 3. Ermakov, V. V. (2022). *Improving the formulation of the nutrient medium of Drygalsky lactose agar*: Kinel : PC Samara SSAU. (in Russ.).
- 4. Kalashnikova, V. A., & Sultanova, O. A. (2018). Monitoring of intestinal diseases and analysis of the spectrum of intestinal microflora in monkeys. *Veterinary Medicine and Feeding*, (1), 37-39. (in Russ.).
- 5. Lukyanchikova, E., & Shelamov, S. (2016). Optimization of the intestinal microflora is the way to increase productivity. *Pig farming*, (3), 65-67. (in Russ.).
- 6. Molyanova, G. V., Semkina, O. V., Statenko, B. I., & Vinokurova, A. P. (2023). Biochemical parameters of the blood of zaanen goats when using a preparation based on bacillus amyloliquefaciens. *Izvestiia Samarskoi gosudarstvennoi selskokhoziaistvennoi akademii (Bulletin Samara State Agricultural Academy*), (4), 79-86. (in Russ.).
- 7. Molyanova, G. V., Ermakov, V. V. & Akulova, I.A. (2029). The effect of the experimental synbiotic BLED-1 in combination with dihydroquercetin on the intestinal microflora of service dogs. *Izvestiia Samarskoi gosudarstvennoi selskokhoziaistvennoi akademii (Bulletin Samara State Agricultural Academy*), 3. 70-77. (in Russ.).
- 8. Molyanova, G. V., Ermakov, V. V., Semkina, O. V. & Vinokurova, A. P. (2024). The effect of Bacil-lus amyloliquefaciens on the body of goats. *Izvestiia Samarskoi gosudarstvennoi selskokhoziaistvennoi akademii (Bulletin Samara State Agricultural Academy*), 3 (75). 101-107. (in Russ.).
- 9. Patent No. 163081 Russian Federation, IPC C12M 1/14, A 61B 10/02 Disposable sterile microbiological L-shaped spatula / Ermakov V.V. No. 2016100537/14; declared. 11.01.2016; published. 10.07.2016, Bull. No. 19. (in Russ.).
- 10. Pashkova, T. M. (2018). The role of persistence factors of opportunistic microorganisms in the infectious process: author's abstract. dis. ... Doctor of Biological Sciences: 06.02.02 / Pashkova Tatyana Mikhailovna, Ufa, 44 p. (in Russ.).

- 11. Samoylenko, V. S., Ozheredova, N. A., & Svetlakova, E. V. (2021). Influence of the synbiotic prototype on the microbiocenosis of the gastrointestinal tract of calves in early postnatal ontogenesis. *Veterinary pathology*, (2 (76)), 53-58. (in Russ.).
- 12. Sycheva, M. V. (2014). Biological effects of antimicrobial substances of animal and bacterial origin: author's abstract. dis. ... Doctor of Biological Sciences: 06.02.02 / Sycheva Maria Viktorovna. Ufa, 48 p. (in Russ.).
- 13. Shchepitova, N. E., Sycheva, M. V., & Kartashova, O. L. (2014). Biological properties of antagonistically active enterococci of the intestinal microflora of animals. *Bulletin of the Orenburg State University*, (13 (174)), 134-138. (in Russ.).

Информация об авторах

- Г. В. Молянова доктор биологических наук, профессор;
- В. В. Ермаков кандидат биологических наук, доцент.

Information about the authors

- G. V. Molyanova Doctor of Biological Sciences, Professor;
- V. V. Ermakov Candidate of Biological Sciences, Associate Professor.

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Статья поступила в редакцию 9.02.2025; одобрена после рецензирования 28.02.2025; принята к публикации 5.03.2025. The article was submitted 9.02.2025; approved after reviewing 28.02.2025; accepted for publication 5.03.2025.