Analysis of Associations Between Expression Patterns of miRNA miR-767, miR-335-3p and miR-106b-5p and Metabolites of Milk and Serum of Goats (Capra hircus)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The presented work characterised the expression profile of microRNAs miR-767, miR-335-3p and miR-106b-5p in milk and blood serum samples of goats from week 1 to week 23 of lactation, taking into account the dynamics of some protein and lipid metabolites of milk and blood. The expression of microRNAs in milk was associated with some changes in the analysed metabolites. MiR-767 was positively correlated with milk protein, casein, and fatty acids (C18:0, MCFA and MUFA). For miR-335-3p, it was negatively correlated with cholesterol and triglycerides of blood, but positively correlated with milk fat and MCFA, SCFA, TFA, and SFA including C14:0, C16:00 and C18:0. Expression of miR-106b-5p showed a unidirectional association with total blood cholesterol. Among all three serum microRNAs analysed, only miR-106b-5p expression was positively associated with milk protein, casein, LCFA and MUFA content. The high predictive effect (R2 > 0.800, p < 0.001) suggests a significant role of microRNAs synthesized by the mammary gland (miR-767 and miR-335-3p) for milk protein and fat components and miR-106b-5p circulating in the blood for milk protein and casein. The results of our study suggest that an increase in the expression level of miR-767, miR-335-3p in milk and miR-106b-5p in blood serum leads to activation of transcription and translation of their target genes, which is phenotypically expressed by an increase in the values of a range of protein and fat components of goat milk. The study of the role of miRNAs in the regulation of lactation is a promising area of modern molecular biology, which has great potential for increasing the efficiency of dairy production, improving product quality and in programs for the development of predictive biomarkers.

Full Text

Restricted Access

About the authors

M. V. Pozovnikova

Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the Ernst Federal Research Center for Animal Husbandry

Author for correspondence.
Email: pozovnikova@gmail.com
Russian Federation, Saint Petersburg, Tyarlevo, 196625

V. B. Leibova

Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the Ernst Federal Research Center for Animal Husbandry

Email: pozovnikova@gmail.com
Russian Federation, Saint Petersburg, Tyarlevo, 196625

References

  1. Assan N. Influence of stage of lactation on quantitative and qualitative milk production parameters in goats // Scientific J. Animal Sci. 2014. V. 3. № 12. Р. 291–300. https://doi.org/10.14196/sjas.v3i12.1775
  2. Osorio J.S., Lohakare J., Bionaz M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscriptional regulation // Physiol. Genomics. 2016. V. 48. № 4. 231–256. https://doi.org/10.1152/physiolgenomics.00016.2015
  3. Valencia-Magaña F., Prado-Rebolledo O., Hernández-Rivera J. et al. The goat udder: mechanism of milk secretion, and protein/fat synthesis // Abanico Veterinario. 2023. V. 13. https://doi.org/10.21929/abavet2023.10
  4. Zhang J., Deng L., Zhang X. et al. Multiple essential amino acids regulate mammary metabolism and milk protein synthesis in lactating dairy cows // Animal Feed Science and Technology. 2023 V. 296. https://doi.org/10.1016/j.anifeedsci.2022.115557
  5. Черепанов Г.Г., Макар З.Н. Сопряженная регуляция органного кровотока и метаболизма секреторных клеток молочной железы: анализ проблемы // Успехи физиол. наук. 2007. T. 38. № 1. С. 74–85.
  6. Michailidou S., Gelasakis A., Banos G. et al. Comparative transcriptome analysis of milk somatic cells during lactation between two intensively reared dairy sheep breeds // Frontiers in Genetics. 2021. V. 12. https://doi.org/10.3389/fgene.2021.700489
  7. Xuan R., Wang J., Zhao X. et al. Transcriptome analysis of goat mammary gland tissue reveals the adaptive strategies and molecular mechanisms of lactation and involution // Intern. J. Mol. Sciences. 2022. V. 23. № 22. https://doi.org/10.3390/ijms232214424
  8. Wang M., Ibeagha-Awemu E.M. Impacts of epigenetic processes on the health and productivity of livestock // Frontiers in Genet. 2021. V. 11. https://doi.org/10.3389/fgene.2020.613636
  9. Huntzinger E., Izaurralde E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay // Nat. Reviews Genet. 2011. V. 12. № 2. P. 99–110. https://doi.org/10.1038/nrg2936
  10. Rani P., Yenuganti V.R., Shandilya S. et al. miRNAs: The hidden bioactive component of milk // Trends in food science & technology. 2017. V. 65. P. 94–102. https://doi.org/10.1016/j.tifs.2017.05.007
  11. Quan S., Nan X., Wang K. et al. Different diets change the expression of bovine serum extracellular vesicle-miRNAs // Animals. 2019. V. 9. № 12. https://doi.org/10.3390/ani9121137
  12. Dysin A.P., Barkova O.Y., Pozovnikova M.V. The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep // Non-coding RNA. 2021. V. 7. № 4. https://doi.org/10.3390/ncrna7040078
  13. Xuan R., Chao T., Wang A. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages // PLoS One. 2020. V. 15. № 6. https://doi.org/10.1371/journal.pone.0234427
  14. Tudisco R., Morittu V.M., Addi L. et al. Influence of pasture on stearoyl-coa desaturase and mirna 103 expression in goat milk: Preliminary results // Animals. 2019. V. 9. № 9. https://doi.org/10.3390/ani9090606
  15. Wang Y., Lin Y., Wu S. et al. BioKA: A curated and integrated biomarker knowledgebase for animals // Nucl. Acids Res. 2024. V. 52. № D1. Р. D1121–D1130. https://doi.org/10.1093/nar/gkad873
  16. Mobuchon L., Marthey S., Boussaha M. et al. Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches // BMC Genomics. 2015. V. 16. P. 1–17. https://doi.org/10.1186/s12864-015-1471-y
  17. Varkonyi-Gasic E., Wu R., Wood M. et al. Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs // Plant Methods. 2007. V. 3. № 1. P. 1–12. https://doi.org/10.1186/1746-4811-3-12
  18. Pozovnikova M.V., Leibova V.B., Tulinova O.V. et al. Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows // Animal Bioscience. 2024. V. 37. № 6. P. 965. https://doi.org/10.5713/ab.23.0427
  19. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method // Methods. 2001. V. 25. № 4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  20. Zhao X., Song Y., Zhang Y. et al. Predictions of milk fatty acid contents by mid-infrared spectroscopy in Chinese Holstein cows // Molecules. 2023. V. 28. № 2. https://doi.org/10.3390/molecules28020666
  21. Chang L., Xia J. MicroRNA regulatory network analysis using miRNet 2.0 // Methods in Mol. Biology. 2023. V. 2594. P. 185–204. https://doi.org/10.1007/978-1-0716-2815-7_14
  22. Huang H.Y., Lin Y.C.D., Cui S. et al. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions // Nucl. Acids Res. 2022. V. 50. № D1. P. D222–D230. https://doi.org/10.1093/nar/gkab1079
  23. Selionova M., Trukhachev V., Aibazov M. et al. Genome-wide association study of milk composition in Karachai goats // Animals. 2024. V. 14. № 2. https://doi.org/10.3390/ani14020327
  24. Akshit F.N., Mao T., Kaushik R. et al. Global comprehensive review and meta-analysis of goat milk composition by location, publication year and lactation stage // J. Food Composition and Analysis. 2024. V. 127. https://doi.org/10.1016/j.jfca.2024.105973
  25. Presti V.L., Tudisco R., Di Rosa A.R. et al. Influence of season on milk fatty acid profile and sensory characteristics of grazing goats in a Mediterranean environment: A sustainable agro-food system // Animal Production Sci. 2023. V. 63. № 7. P. 689–703. https://doi.org/10.1071/AN21538
  26. Kováčová M., Výrostková J., Dudriková E. et al. Assessment of quality and safety of farm level produced cheeses from sheep and goat milk // Applied Sciences. 2021. V. 11. № 7. https://doi.org/10.3390/app11073196
  27. Kljajevic N.V., Tomasevic I.B., Miloradovic Z.N. et al. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions // J. Food Science and Technology. 2018. V. 55. P. 299–303. https://doi.org/10.1007/s13197-017-2938-4
  28. Ibrahim N.S., Tajuddin F.H.A. Evaluation of milk production and milk composition at different stages of Saanen dairy goats // J. Agrobiotechnology. 2021. V. 12. № 1S. P. 204–211. https://doi.org/10.37231/jab.2021.12.1S.286
  29. Bernard L., Leroux C., Chilliard Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland // Bioactive Components of Milk. 2008. P. 67–108. https://doi.org/10.1007/978-0-387-74087-4_2
  30. Batista C.P., Castro S.M., Correa H.J. et al. Relation between liver lipid content and plasma bio-chemical indicators in dairy cows // Acta Scientiae Veterinariae. 2020. № 48. P. 122–124. http://hdl.handle.net/10183/211802
  31. Лебедева И.Ю., Лейбова В.Б., Соломахин А.А. и др. Репродуктивный статус коров с разной молочной продуктивностью в связи с динамикой липидного обмена в послеотельный период // С.-хоз. биология. 2018. Т. 53. № 6. С. 1180–1189. https://doi.org/10.15389/agrobiology.2018.6.1180rus
  32. Antunovic Z., Speranda M., Novoselec J. et al. Blood metabolic profile and acid-base balance of dairy goats and their kids during lactation // Veterinarski Arhiv. 2017. V. 87. № 1. P. 43–55.
  33. Лейбова В.Б., Позовникова М.В. Изменчивость метаболических маркеров в крови у молочных коз с разной динамикой удоя в первой половине лактации // Аграрная наука. 2024. № 2. С. 44–47. https://doi.org/10.32634/0869-8155-2024-379-2-44-47
  34. Лейбова В.Б., Позовникова М.В. Вариативность биохимических показателей крови у коз зааненской породы в первые месяцы лактации // Пермский аграрный вестник. 2022. № 3 (39). С. 103–109. https://doi.org/10.47737/2307-2873_2022_39_102
  35. Modepalli V., Kumar A., Hinds L.A. et al. Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii) // BMC Genomics. 2014. V. 15. P. 1–18. https://doi.org/10.1186/1471-2164-15-1012
  36. Lin X., Luo J., Zhang L. et al. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats // Gene Expression. 2013. V. 16. № 1. P. 1–13. https://doi.org/10.3727/105221613X13776146743262
  37. Ammah A.A., Do D.N., Bissonnette N. et al. Co-expression network analysis identifies miRNA–mRNA networks potentially regulating milk traits and blood metabolites // Intern. J. Mol. Sciences. 2018. V. 19. № 9. https://doi.org/10.3390/ijms19092500
  38. Xu E., Chen C., Fu J. et al. Dietary fatty acids in gut health: Absorption, metabolism and function // Animal Nutrition. 2021. V. 7. № 4. P. 1337–1344. https://doi.org/10.1016/j.aninu.2021.09.010
  39. Wang L., Xu F., Song Z. et al. A high fat diet with a high C18:0/C16:0 ratio induced worse metabolic and transcriptomic profiles in C57BL/6 mice // Lipids in Health and Disease. 2020. V. 19. P. 1–13. https://doi.org/10.1186/s12944-020-01346-z
  40. Viturro E., Farke C., Meyer H.H.D. et al. Identification, sequence analysis and mRNA tissue distribution of the bovine sterol transporters ABCG5 and ABCG8 // J. Dairy Science. 2006. V. 89. № 2. P. 553–561. https://doi.org/10.3168/jds.S0022-0302(06)72118-X
  41. Gebreyesus G., Buitenhuis A.J., Poulsen N.A. et al. Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition // BMC Genomics. 2019. V. 20. P. 1–16. https://doi.org/10.1186/s12864-019-5573-9
  42. Wang H., Shi H., Luo J. et al. MiR-145 regulates lipogenesis in goat mammary cells via targeting INSIG1 and epigenetic regulation of lipid‐related genes // J. Cell. Physiology. 2017. V. 232. № 5. P. 1030–1040. https://doi.org/10.1002/jcp.25499
  43. Zhu L., Jiao H., Gao W. et al. Fatty acid desaturation is suppressed in mir-26a/b knockout goat mammary epithelial cells by upregulating INSIG1 // Intern. J. Mol. Sciences. 2023. V. 24. № 12. https://doi.org/10.3390/ijms241210028
  44. Yart L., Finot L., Marnet P.G. et al. Suppression of ovarian secretions before puberty strongly affects mammogenesis in the goat // J. Dairy Research. 2012. V. 79. № 2. P. 157–167. https://doi.org/10.1017/S0022029912000106
  45. Chung N., Bogliotti Y.S., Ding W. et al. Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos // Epigenetics. 2017. V. 12. № 12. P. 1048–1056. https://doi.org/10.1080/15592294.2017.1403693
  46. Wang J.J., Wang X., Xian Y.E. et al. The JMJD3 histone demethylase inhibitor GSK-J1 ameliorates lipopolysaccharide-induced inflammation in a mastitis model // J. Biol. Chemistry. 2022. V. 298. № 6. https://doi.org/10.1016/j.jbc.2022.102017
  47. Xu Q., Mei G., Sun D. et al. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle // BMC Genomics. 2012. V. 13. P. 1–10. https://doi.org/10.1186/1471-2164-13-590
  48. Liu Y., He Y., Jin A. et al. Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation // Proc. Natl Acad. Sci. USA. 2014. V. 111. № 23. P. E2414–E2422. https://doi.org/10.1073/pnas.1315605111
  49. Wei Y., Tian C., Zhao Y. et al. MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism // Nat. Metabolism. 2020. V. 2. № 5. P. 447–460. https://doi.org/10.1038/s42255-020-0203-z
  50. Song J., Merrill R.A., Usachev A.Y. et al. The X-linked intellectual disability gene product and E3 ubiquitin ligase KLHL15 degrades doublecortin proteins to constrain neuronal dendritogenesis // J. Biol. Chemistry. 2021. V. 296. P. 100082. https://doi.org/10.1074/jbc.RA120.016210
  51. Bian F., Ma X., Villivalam S.D. et al. TET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytes // Metabolism. 2018. V. 89. P. 39–47. https://doi.org/10.1016/j.metabol.2018.08.006
  52. Vilà-Brau A., De Sousa-Coelho A.L., Mayordomo C. et al. Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line // J. Biol. Chemistry. 2011. V. 286. № 23. P. 20423–20430. https://doi.org/10.1074/jbc.M111.235044
  53. Cao H., Zhang S., Shan S. Ligand-dependent corepressor (LCoR) represses the transcription factor C/EBPβ during early adipocyte differentiation // J. Biol. Chemistry. 2017. V. 292. № 46. P. 18973–18987. https://doi.org/10.1074/jbc.M117.793984
  54. Kitagishi Y., Matsuda S. RUFY, Rab and Rap family proteins involved in a regulation of cell polarity and membrane trafficking // Intern. J. Mol. Sciences. 2013. V. 14. № 3. P. 6487–6498. https://doi.org/10.3390/ijms14036487

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The PCR graph for all analyzed components of goat milk (a), for a cluster including MJ and LC (b), and the correlation matrix of goat milk components (c); in cells: **p < 0.01, ***p < 0.001.

Download (374KB)
3. 2. Dynamic changes in triglycerides (a), total cholesterol (b), and total protein (c) in goat blood serum.

Download (115KB)
4. 3. The level of relative expression of (-2–dCt) miR-767 (a), miR-335-3p (b) and miR-106b-5p (c) in goat milk and blood serum during various periods of the first lactation.

Download (96KB)
5. 4. Graph of the prognostic ability of miR-106b-5p blood based on a logistic nonlinear regression model for predicting the content of MDB (a), casein (b), C18:1 (c), DCFA (d), MNFA (e) and total serum protein (e).

Download (300KB)
6. 5. Graph of the predictive ability of milk microRNAs based on a logistic nonlinear regression model for predicting the content of milk and blood serum metabolites: miR-767 – MJ (a), MDB(b), casein (c), C18:1 (d), SCFA (e), MNFA (e); miR-335-3p – MJ (w), C14:0 (H), C16:0 (i), C18:0 (K), SCFA (L), NLC (M), SCFA (H), THC (o), blood triglycerides (P), total blood cholesterol (p); miR-106b-5p – total blood cholesterol (c).

Download (531KB)
7. 6. microRNAs and all their target genes, including the genes of the “central module”.

Download (254KB)

Copyright (c) 2025 Russian Academy of Sciences