Influence of processes on the Sun and in the interplanetary medium on the solar proton event on March 30, 2022
- Autores: Vlasova N.A.1, Bazilevskaya G.A.2, Ginzburg E.A.3, Daibog E.I.1, Kalegaev V.V.1,4, Kaportseva K.B.1,4, Logachev Y.I.5, Myagkova I.N.5
-
Afiliações:
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Lebedev Physical Institute, Russian Academy of Sciences
- Fedorov Institute of Applied Geophysics
- Lomonosov Moscow State University
- Skobeltsyn Institute of Nuclear Physics
- Edição: Volume 65, Nº 1 (2025)
- Páginas: 25-39
- Seção: Articles
- URL: https://bulletin.ssaa.ru/0016-7940/article/view/684615
- DOI: https://doi.org/10.31857/S0016794025010031
- EDN: https://elibrary.ru/AENOID
- ID: 684615
Citar
Resumo
The results of a comparative analysis of the solar proton event on March 30, 2022, which has an unusual time profile of solar proton fluxes, with the previous and subsequent solar proton events (March 28, 2022 and April 02, 2022) are presented. Increases in energetic proton fluxes in interplanetary and near-Earth space are associated with successive solar X-ray flares M4.0, X1.3 and M3.9 and three halo-type coronal mass ejections. The work was done based on experimental data obtained from spacecraft located in interplanetary space (ACE, WIND, STEREO A, DSCOVR), in a circular polar orbit at an altitude of 850 km (Meteor-M2) and in geostationary orbit (GOES-16, Electro-L2). An explanation has been proposed for the features of the energetic proton flux profile in the solar proton event on March 30, 2022: protons accelerated in the flare on March 30, 2022 were partially screened by an interplanetary coronal mass ejection, the source of which was the explosive processes on the Sun on March 28, 2022; late registration of maximum proton fluxes, simultaneous for particles of different energies, is due to the arrival of particle fluxes inside an interplanetary coronal mass ejection. The spatial distribution of solar protons in near-Earth orbit was similar to the distribution at the Lagrange point L1, but with a delay of ~50 min.
Palavras-chave
Sobre autores
N. Vlasova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Autor responsável pela correspondência
Email: nav19iv@gmail.com
Rússia, Moscow
G. Bazilevskaya
Lebedev Physical Institute, Russian Academy of Sciences
Email: nav19iv@gmail.com
Rússia, Moscow
E. Ginzburg
Fedorov Institute of Applied Geophysics
Email: nav19iv@gmail.com
Rússia, Moscow
E. Daibog
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: nav19iv@gmail.com
Rússia, Moscow
V. Kalegaev
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Lomonosov Moscow State University
Email: nav19iv@gmail.com
Faculty of Physics
Rússia, Moscow; MoscowK. Kaportseva
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Lomonosov Moscow State University
Email: nav19iv@gmail.com
Faculty of Physics
Rússia, Moscow; MoscowYu. Logachev
Skobeltsyn Institute of Nuclear Physics
Email: nav19iv@gmail.com
Rússia, Moscow
I. Myagkova
Skobeltsyn Institute of Nuclear Physics
Email: nav19iv@gmail.com
Rússia, Moscow
Bibliografia
- Базилевская Г.А., Дайбог Е.И., Логачев Ю.И. Изолированные события солнечных космических лучей, обусловленные приходом быстрых штормовых частиц (ESP) // Геомагнетизм и аэрономия. Т. 63. № 4. С. 503−510. 2023. https://doi.org/10.31857/S0016794023600254
- Дайбог Е.И., Логачев Ю.И., Кейлер С., Кечкемети К. Серии солнечных событий с одинаковыми спадами как инструмент для выделения квазистационарных состояний межпланетного пространства // Космич. исслед. Т. 42. № 4. С. 376–383. 2004.
- Дайбог Е.И., Кечкемети К., Лазутин Л.Л., Логачев Ю.И., Сурова Г.М. 27-дневная периодичность потоков юпитерианских электронов на орбите Земли // Астрон. журн. Т. 94. № 12. С. 1062–1070. 2017. https://doi.org/10.7868/S0004629917120027
- Логачев Ю.И., Базилевская Г.А., Власова Н.А., Гинзбург Е.А., Дайбог Е.И., Ишков В.Н., Лазутин Л.Л., Нгуен М.Д., Сурова Г.М., Яковчук О.С. Каталог солнечных протонных событий 24-го цикла солнечной активности (2009−2019 гг.). Москва: МЦД, 970 с. 2022. https://doi.org/10.2205/ESDB-SAD-008
- Любимов Г.П. Отражательная модель движения СКЛ в петлевых ловушках // Астрон. циркуляр АН СССР. № 1531. С. 19−20. 1988.
- Любимов Г.П., Григоренко Е.Е. Об отражательной модели солнечных космических лучей // Космич. исслед. Т. 45. № 1. С. 12–19. 2007.
- Паркер Е.Н. Динамические процессы в межпланетной среде / Под ред. Л.И. Дормана. М.: МИР, 1965.
- Bazilevskaya G.A. Once again about origin of the solar cosmic rays // Journal of Physics: Conf. Series. V. 798. P. 012034. 2017. https://iopscience.iop.org/article/10.1088/1742-6596/798/1/012034/pdf
- Bryant D.A., Cline T.L., Desai U.D., McDonald F.B. Explorer 12 observations of solar cosmic rays and energetic storm particles after the solar flare of September 28, 1961 // J. Geophys. Res. V. 67. № 13. P. 4983–5000. 1962. https://doi.org/10.1029/JZ067i013p04983
- Burlaga L., Sittler E., Mariani F., Schwenn R. Magnetic Loop Behind an Interplanetary Shock: Voyager, Helios, and IMP 8 Observations // J. Geophys. Res. V. 86. № A8. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
- Burlaga L.F. Magnetic clouds and force-free fields with constant alpha // J. Geophys. Res., Space Physics. V. 93. № A7. P. 7217−7224. 1988. https://doi.org/10.1029/JA093iA07p07217
- Cane H.V., Reames D.V., von Rosenvinge T.T. The role of interplanetary shocks in the longitude distribution of solar energetic particles // J. Geophys. Res. V. 93. № A9. P. 9555−9567. 1988. https://doi.org/10.1029/JA093iA09p09555
- Frassati F., Laurenza M., Bemporad A., West M.J., Mancuso S., Susino R., Alberti T., Romano P. Acceleration of Solar Energetic Particles through CME-driven Shock and Streamer Interaction // Astrophysical Journal. V. 926. № 2. P. 227−246. 2022. https://doi.org/10.3847/1538-4357/ac460e
- Gieseler J., Dresing N., Palmroos C. et al. Solar-MACH: An open-source tool to analyze solar magnetic connection configurations // Front. Astronomy Space Sci. V. 9. 2022. https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2022.1058810/full
- Kahler S.W., Sheeley Jr. N.R., Howard R.A., Koomen M.J., Michels D.J., McGuire R.E., von Rosenvinge T.T., Reames D.V. Associations between coronal mass ejections and solar energetic proton events // J. Geophys. Res. V. 89. № A11. P. 9683−9693. 1984. https://doi.org/10.1029/JA089iA11p09683
- Kahler S.W., Reames D.V. Probing the Magnetic Topologies of Magnetic Clouds by Means of Solar Energetic Particles // J. Geophys. Res. V. 96. № A6. P. 9419−9424. 1991. https://doi.org/10.1029/91JA00659
- Kecskeméty K., Daibog E.I., Logachev Y.I., Kóta J. The decay phase of solar energetic particle events // J. Geophys. Res. V. 114. № A6. 2009. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008JA013730
- Klein K.-L., Dalla S. Acceleration and Propagation of Solar Energetic Particles // Space Sci. Rev. V. 212. P. 1107–1136. 2017. https://link.springer.com/article/10.1007/s11214-017-0382-4
- Kocharov L., Kovaltsov G.A., Torsti J., Huttunen-Heikinmaa K. Modeling the solar energetic particle events in closed structures of interplanetary magnetic field // J. Geophys. Res. V. 110. № A12. 2005. https://doi.org/10.1029/2005JA011082
- Lepping R.P., Jones J.A., Burlaga L.F. Magnetic Field Structure of Interplanetary Magnetic Clouds at 1 AU // J. Geophys. Res. V. 95. № A8. P. 11957−11965. 1990. https://doi.org/10.1029/JA095iA08p11957
- Marqué C., Posner A., Klein K.L. Solar energetic particles and radio-silent fast coronal mass ejections // Astrophys. J. V. 642. P. 1222–1235. 2006. https://iopscience.iop.org/article/10.1086/501157
- Masson S., Démoulin P., Dasso S., Klein K.-L. The interplanetary magnetic structure that guides solar relativistic particles // Astron. & Astrophys. V. 538. № A32. 2012. https://doi.org/10.1051/0004-6361/201118145
- Meyer P., Parker E.N., Simson J.A. Solar Cosmic Rays of February, 1956 and Their Propagation through Interplanetary Space // Phys. Rev. V. 104. № 3. P. 768-783. 1956. https://journals.aps.org/pr/pdf/10.1103/PhysRev.104.768?casa_token=_yHvEAClLcEAAAAA%3AN2b4irIb6lbxj2NRvyjazm_9GMXbDKcHv9Y_ecZcJZzI_q0ZDfqSlQOwNxV7QCcsWNn_7OfaXp2VqmgB
- Owens A.J. Interplanetary diffusion of solar cosmic rays—A new approximate analytic solution // J. Geophys. Res. V. 84. № A8. P. 4451 – 4456. 1979. https://doi.org/10.1029/JA084iA08p04451
- Pal S., Dash S., Nandy D. Flux erosion of magnetic clouds by reconnection with the Sun’s open flux // Geophys. Res. Lett. V. 47. № 8. e2019GL086372. 2020. https://doi.org/10.1029/2019GL086372
- Reames D.V. Solar energetic particles: A paradigm shift // Rev. Geophys. V. 33. S1. P. 585−589. 1995. https://doi.org/10.1029/95RG00188
- Reames D.V. The two sources of solar energetic particles // Space Science Reviews. V. 175. P. 53–92. 2013. https://doi.org/10.1007/s11214-013-9958-9
- Reames D.V. Solar Energetic Particles. A Modern Primer on Understanding Sources, Acceleration and Propagation / Part of the book series: Lecture Notes in Physics (LNP, volume 932) 2017.
- Reames D.V. How Do Shock Waves Define the Space-Time Structure of Gradual Solar Energetic Particle Events? // Space Science Reviews. V. 219. A14. 2023. https://doi.org/10.1007/s11214-023-00959-x
- Reinard A.A., Biesecker D.A. Coronal mass ejection associated coronal dimmings // Astrophys. J. V. 674. P. 576−585. 2008. https://iopscience.iop.org/article/10.1086/525269
- Richardson I.G. Energetic particles and corotating interaction regions in the solar wind // Space Science Reviews. V. 111. P. 267–376. 2004. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e
- Richardson I.G. Solar wind stream interaction regions throughout the heliosphere // Living Reviews in Solar Phys. V. 15. A1. 2018. https://doi.org/10.1007/s41116-017-0011-z
- Shen C., Wang Y., Ye P., Wang S. Enhancement of Solar Energetic Particles During a Shock – Magnetic Cloud Interacting Complex Structure // Solar Phys. V. 252. P. 409–418. 2008. https://link.springer.com/article/10.1007/s11207-008-9268-7
- Tan L.C., Malandraki O.E., Reames D.V., Ng C.K., Wang L., Dorrian G. Use of incident and reflected solar particle beams to trace the topology of magnetic clouds // Astrophys. J. V. 750. № 2. P. 146−167. 2012. https://iopscience.iop.org/article/10.1088/0004-637X/750/2/146/meta
- Torsti J., Riihonen E., Kocharov L. The 1998 May 2–3 magnetic cloud: an interplanetary “highway” for solar energetic particles observed with SOHO/ERNE // Astrophys. J. V. 600. P. L83–L86. 2004. https://iopscience.iop.org/article/10.1086/381575
- Vlasova N.A., Bazilevskaya G.A., Ginzburg E.A., Daibog E.I., Kalegaev V.V., Kaportseva K.B., Logachev Yu.I., Myagkova I.N. Solar Energetic Proton Fluxes in Near-Earth Space on March 13–23, 2023 // Cosmic Res. V. 62. № 2. C. 197−209. 2024. https://link.springer.com/article/10.1134/S0010952523600282
- Vörös Z., Varsani A., Yordanova E., Sasunov Y.L., Roberts O.W., Kis Á., Nakamura R., Narita Y. Magnetic reconnection within the boundary layer of a magnetic cloud in the solar wind // Journal of Geophysical Research: Space Physics. V. 126. № 9. e2021JA029415. 2021. https://doi.org/10.1029/2021JA029415
- Wu S.-S., Qin G. Magnetic Cloud and Sheath in the Ground-level Enhancement Event of 2000 July 14. I. Effects on the Solar Energetic Particles // Astrophys. J. V. 904. № 2. P. 151−159. 2020. https://doi.org/10.3847/1538-4357/abc0f2
- Zhang M., Cheng L., Zhang J., Riley P., Kwon R.Y., Lario D., Balmaceda L., Pogorelov N.V. A Data-driven, Physics-based Transport Model of Solar Energetic Particles Accelerated by Coronal Mass Ejection Shocks Propagating through the Solar Coronal and Heliospheric Magnetic Fields // Astrophys. J.: Supplement Series. V. 266. № 2. P. 35−54. 2023. https://doi.org/10.3847/1538-4365/accb8e
Arquivos suplementares
