Influence of In Situ Formed Nickel- and Cobalt-Containing Catalysts on the Mechanism of Conversion of Heavy Oil Asphaltenes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of the amount of precursors of cobalt and nickel oxides on the composition and structure of catalytic cracking products of heavy oil from the Zyuzeevskoye field was studied. It was found that an increase in the amount of a loaded precursor led to the destruction of a larger amount of resin–asphaltene components and the yield of an IBP–360°C fraction. It was established that nickel-containing catalysts facilitated the destruction of 66% high-molecular-weight components, and cobalt-containing catalysts contributed to a low yield of by-products. The structural group analysis of initial oil asphaltenes and those formed after thermal and catalytic cracking was studied. A possible mechanism of the reactions was presented based on the experimental data.

作者简介

Kh. Urazov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: urazovhh@gmail.com
Tomsk, 634055 Russia

N. Sviridenko

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nikita26sviridenko@gmail.com
Tomsk, 634055 Russia

参考

  1. Guo K., Li H., Yu Z. // Fuel. 2016. V. 185. P. 886. https://doi.org/10.1016/j.fuel.2016.08.047
  2. Yakubov M.R., Abilova G.R., Yakubova S.G., Mironov N.A. // Pet. Chem. 2020. V. 60. P. 637. https://doi.org/10.1134/S0965544120060109
  3. Zhao F., Liu Y., Lu N., Xu T., Zhu G., Wang K. // Energy Report. 2021. V. 7. P. 4249. https://doi.org/10.1016/j.egyr.2021.06.094
  4. Kadkin O.N., Mikhailova A.N., Khafizov N.R., Yuan C., Varfolomeev M.A. // Fuel. 2022. V. 313. P. 123056. https://doi.org/10.1016/j.fuel.2021.123056
  5. Lakhova A., Petrov S., Ibragimova D., Kayukova G., Safiulina A., Shinkarev A. Okekwe R. // J. Pet. Sci. Eng. 2017. V. 153. P. 385. https://doi.org/10.1016/j.petrol.2017.02.015
  6. Yeletsky P.M., Zaikina O.O., Sosnin G.A., Kukushkin R.G., Yakovlev V.A. // Fuel Process. Technol. 2020. V. 199. P. 106239. https://doi.org/10.1016/j.fuproc.2019.106239
  7. Guo K., Hansen V.F., Li H., Yu Z. // Fuel. 2018. V. 211. P. 697. https://doi.org/10.1016/j.fuel.2017.09.097
  8. Уразов Х.Х., Свириденко Н.Н. // ХТТ. 2022. № 2. С. 46. [Urazov K.K., Sviridenko N.N. // Solid Fuel Chem. 2022. V. 56. P. 128. https://doi.org/10.3103/S0361521922020100]https://doi.org/10.31857/S0023117722020104
  9. Urazov K.K., Sviridenko N.N., Iovik Y.A., Kolobova E.N., Grabchenko M.V., Kurzina I.A., Mukhamatdinov I.I. // Catalysts. 2022. V. 12. P. 1154. https://doi.org/10.3390/catal12101154
  10. Nassar N.N., Hassan A., Pereira-Almao P. // Energy Fuels. 2011. V. 25. P. 1017. https://doi.org/10.1021/ef101230g

补充文件

附件文件
动作
1. JATS XML
2.

下载 (102KB)
3.

下载 (75KB)
4.

下载 (353KB)

版权所有 © Х.Х. Уразов, Н.Н. Свириденко, 2023