Colloidal dispersion properties of oil emulsions in an electromagnetic field
- Authors: Loskutova J.V.1, Yudina N.V.1
-
Affiliations:
- Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 26-32
- Section: Articles
- URL: https://bulletin.ssaa.ru/0023-1177/article/view/684043
- DOI: https://doi.org/10.31857/S0023117725010047
- EDN: https://elibrary.ru/KUTKRM
- ID: 684043
Cite item
Abstract
The effect of electromagnetic field on colloidal dispersion properties of water-oil emulsions of two resinous low paraffin oils is studied. It is shown that the maximum result of water-oil emulsion stratification is achieved after 15 minute treatment at a frequency of 250 Hz and a voltage of 17 kV for 10 wt % of emulsions and 500 Hz and 15 kV for 30 wt % of emulsions, respectively. With increasing time of emulsion treatment, the size and number of droplets in the oil phase decrease and the residual water content of the treated emulsions after stratification does not exceed 0.5 wt %. In an electromagnetic field, the drop-drop coalescence process in the emulsion is intensified due to the rapid destruction of the armor shells of water globules, the formation of new resin-asphaltene aggregates of a larger or smaller size, and the redistribution of components between the dispersion medium and the dispersed phase.
Keywords
Full Text

About the authors
Ju. V. Loskutova
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: reoloil@ipc.tsc.ru
Russian Federation, Tomsk
N. V. Yudina
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: natal@ipc.tsc.ru
Russian Federation, Tomsk
References
- Sjoblom J., Aske N., Auflem I.H., Brandal O., Havre T.E., Sather O., Kallevik H. // Adv. Colloid Interface Sci. 2003. V. 100. P. 399–473. https://doi.org/10.1016/S0001-8686(02)00066-0
- Волкова Г.И., Лоскутова Ю.В., Прозорова И.В., Березина Е.М. Подготовка и транспорт проблемных нефтей. Томск: Изд-во ТГУ, 2015. 136 с.
- Langevin D., Poteau S., Hénaut I., Argillier J.F. // Oil & Gas Science and Technology – Rev. IFP. 2004. V. 59. № 5. P. 511-521. https://doi.org/10.2516/ogst:2004036
- Crude Oil Emulsions – Composition Stability and Characterization. Edited by Manar El-Sayed Abdel-Raouf. INTECH, 2012. 230 p. www. intechopen.org.
- Djuve J., Yang X., Fjellanger I.J., Sjoblom J., Pelizzetti E. // Colloid Polym. Sci. 2001. V. 279. № 3. P. 232–239. https://doi.org/10.1007/s003960000413
- Тронов В.П. Промысловая подготовка нефти. Казань: Изд-во “Фэн”, 2000. 260 с.
- Taolti S., Yiyang Z., Lu W., Sui Z., Bo P., Li M., Yu J. //J. Colloid Interfact Science. 2002. V. 255. P. 241–247. 10.1006/jcis.2002.8661' target='_blank'>https://doi: 10.1006/jcis.2002.8661
- Alsabagh A.M., Hassan M.E., Desouky S.E.M., Nasser N.M., Elsharaky E.A., Abdelhamid M.M. // Egyptian Journal of Petroleum. 2016. V. 25. № 4. P. 585–595. https://doi.org/10.1016/j.ejpe.2016.05.008
- Delfos R., Murphy S., Stanbridge D., Olujić Ž., Jansens P.J. // Minerals Engineering. 2004. V. 17. № 5. P. 721–731. https://doi.org/10.1016/j.mineng.2004.01.012
- Ni X., Mignard D., Saye B., Johnstone J.C., Pereira N. // Chemical Engineering Science. 2002. V. 57. № 11. P. 2101–2114. https://doi.org/10.1016/S0009-2509(02)00100-8
- Zhao F., Tian Z., Yu Z., Shang H., Wu Y., Zhang Y. // Energy Sci Eng. 2020. V. 8. P. 4158–4175. https://doi.org/10.1002/ese3.814
- Sjöblom J., Mhatre S., Simon S., Skartlien R., Sørland G. // Advances in Colloid and Interface Science. 2021. V. 294. P. 102455. https://doi.org/10.1016/j.cis.2021.102455
- Yang D., Xu M., He L., Luo X., Lü Y., Yan H., Tian C. // Chemical Engineering Science. 2015. V. 138. P. 71–85. https://doi.org/10.1016/j.ces.2015.07.049
- Loskutova Yu.V., Yudina N.V. // Petroleum Chemistry. 2022. V. 62. № 5. P. 506–514. https://doi.org/10.1134/S0965544122020220
- Kovaleva L.A., Minnigalimov R.Z., Zinnatullin R.R. // Energy&Fuels. 2011. V. 25. P. 3731–3738. https://doi.org/10.1021/ef200249a
- Hosseini M., Shahavi M.H. // Separation Science and Engineering. Chinese Journal of Chemical Engineering. 2012. V. 20. № 4. P. 654–658.
- Eowa J.S., Ghadiri M., Sharif A.O., Williams T.J. // Chemical Engineering Journal. 2001. V. 84. P. 173–192. https://doi.org/10.1016/S1385-8947(00)00386-7
- Taghavi H., Ashoori S., Mousavi S.H. // Petroleum Science and Technology. 2017. V. 36. № 7. P. 1–7. http://dx.doi.org/10.1080/10916466.2017.1347680
- Ali N., Zhang B., Zhang H., Zaman W., Li X., Li W., Zhang Q. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2015. V. 472. P. 38–49. https://dx.doi.org/10.1016/j.colsurfa.2015.01.087
- Yang D., Ghadiri M., Sun Y., He L., Luo X., Lü Y. // Chemical Engineering Research and Design. 2018. V. 136. P. 83–93. https://doi.org/10.1016/j.cherd.2018.05.004
- Less S., Vilagines R. // Journal of Petroleum Science and Engineering. 2012. V. 81. P. 57–63. https://dx.doi.org/10.1016/j.petrol.2011.12.003
- Mhatre S., Thaokar R. // Chemical Engineering and Processing. 2015. V. 96. P. 28–38. http://dx.doi.org/10.1016/j.cep.2015.07.025
Supplementary files
