Ultrasonic treatment conditions on the properties of emulsions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of ultrasonic treatment modes on microstructure and structural-rheological properties of emulsions of oils with distilled and formation water was investigated. Emulsions were treated in ultrasonic field (frequency 22 kHz, intensity 2, 6 and 18 W/cm2). The microstructure of emulsions was studied using an optical microscope AXIO LAB.A1 (Carl Zeiss, Germany). The dispersion analysis of emulsion micrographs was carried out and the influence of processing conditions, type of dispersed phase on the average particle size, dispersibility and position of the maximum of the size distribution of water droplets in the emulsion was revealed. Rheological parameters of emulsions before and after ultrasonic treatment were studied using HAAKE Viscotester iQ rotational viscometer (ThermoScientific, USA). For high-viscosity oil with high content of resinous-asphaltene components after ultrasonic treatment in pulse mode at field intensity of 6 W/cm2 and 2 modes (5 cycles with 10 s of operation and 10 s of pause; 10 cycles with 5 s of operation and 5 s of pause) a decrease in the degree of dispersibility of water droplets was observed.

Texto integral

Acesso é fechado

Sobre autores

G. Volkova

FGBUN Institute of Petroleum Chemistry SB RAS

Autor responsável pela correspondência
Email: galivvol@yandex.ru
Rússia, 634055 Tomsk

E. Smirnova

FGBUN Institute of Petroleum Chemistry SB RAS

Email: smirnova.chemtsu@gmail.com
Rússia, 634055 Tomsk

Bibliografia

  1. Голых Р.Н., Минаков В.Д. // Южно-сибирский научный вестник. 2023. № 1 (47). С. 61-6. [Yuzhno-sibirskij nauchnyj vestnik, 2023, no. 1 (47), p. 61]. https://doi.org/10.25699/SSSB.2023.47.1.001
  2. Голых Р.Н., Боброва Г.А., Хмелев В.Н., Барсуков Р.В., Генне Д.В., Абраменко Д.С., Шакура В.А., Титов Г.А., Ильченко Е.В. // Южно-Сибирский научный вестник. 2020. № 2. С. 57. [Yuzhno-sibirskij nauchnyj vestnik, 2020, no. 2, p. 57].
  3. Xie W., Li R., Lu X. // Ultrason Sonochem. 2015. Sep 26. P. 136. http://dx.doi.org/10.1016/j.ultsonch.2015.03.004.
  4. Хмелев В.Н., Сливин А.Н., Барсуков Р.В., Цыганок С.Н., Шалунов А.В. Применение ультразвука высокой интенсивности в промышленности. Бийск: Изд-во Алт. гос. техн. ун-та, 2010. 203 c.
  5. Хмелев В.Н., Барсуков Р.В., Леонов Г.В., Ильченко Е.В. // XV Международная конференция-семинар молодых специалистов по микро- и нанотехнологиям и электронным устройствам EDM’ 2014. 2014. P. 217.
  6. Атхлей А.А., Атчли А.А., Фриззелл Л.А., Апфель Р.Е., Холланд К.К., Маданшетти С., Рой Р.А. // Ультразвук. 1988. Том 26. Выпуск 5. С. 280. [Ul’trazvuk., 1988, no. 5, p. 280].
  7. Лекомцев А.В., Мордвинов В.А., Дворецкас Р.В., Степаненко И.Б., Баканеев В.С., Силичев М.А., Корнилов К.В. //Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 5. С. 101. [Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov., 2021, V. 332, no. 5, p. 101] https://doi.org/10.18799/24131830/2021/05/3189
  8. Хмелев В.Н., Голых Р.Н., Хмелев М.В., Шакура В.А., Шалунов А.В., Барсуков Р.В. // Южно-Сибирский научный вестник. 2017. № 3. С. 15. [Yuzhno-sibirskij nauchnyj vestnik, 2017, no. 3, p. 15].
  9. Гаврилова Н.Н., Назаров В.В., Яровая О.В. Микроскопические методы определения размеров частиц дисперсных материалов. М.: РХТУ им. Менделеева, 2012. 52 с.
  10. Морозова А.В., Волкова Г.И. // Химия в интересах устойчивого развития. 2020. № 28. С. 508. https://doi.org/10.15372/KhUR20202570/ [Chemistry for Sustainable Development, 2020, V. 28, p. 494. https://doi.org/10.15372/CSD20202570].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Differential curves of water droplet size distribution after short-term ultrasonic treatment of oil emulsion UN with an intensity of 6 (a) and 18 (b) W/cm2.

Baixar (321KB)
3. Fig. 2. Differential curves of water droplet size distribution after pulsed ultrasonic treatment of UN oil emulsion with formation water: 6 (a) and 18 (b) W/cm2.

Baixar (394KB)
4. Fig. 3. Micrographs of emulsion with PV after ultrasonic treatment with a field intensity of 6 and 18 W/cm2.

Baixar (564KB)
5. Fig. 4. Effect of the ultrasonic treatment time on the viscosity of the emulsion with PV in the absence of resonance at an intensity of 18 W/cm2.

Baixar (189KB)
6. Fig. 5. Effect of the UZO mode on the viscosity of the emulsion with PV in the absence of resonance at an intensity of 18 W/cm2.

Baixar (198KB)
7. Fig. 6. Effect of ultrasound intensity on the viscosity of emulsion with PV after pulse treatment 5 (5 × 5).

Baixar (168KB)
8. Fig. 7. Rheological curves of VNE with SK oil after UZO: (a) – forward and reverse flow curves, (b) – dependence of viscosity on the shear rate of VNE treated for 5 min at 6 and 18 W/cm2.

Baixar (477KB)
9. Fig. 8. Differential curves of water droplet size distribution after ultrasonic treatment of SK oil emulsion at 18 W/cm2.

Baixar (154KB)
10. Fig. 9. Micrographs of SK oil emulsion.

Baixar (893KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025