Hydrocarbons composition of thermal and catalytic cracking products of asphaltens, derived in supercritical water medium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The hydrocarbon composition of oils of asphaltene cracking products has been studied. The experiments were conducted in three different modes: without the use of additives (without water and catalysts – a “control experiment”), in a supercritical water environment without a catalyst and in a supercritical water environment with a catalyst based on iron oxides. Cracking was carried out in a reactor at a temperature of 450°C, the duration of the experiment was 60 minutes, the catalyst was obtained in situ from tris – acetylacetonate of iron(III). The individual hydrocarbon composition of the oils isolated from cracking products was determined using chromato-mass spectral analysis on the quadrupole system GCMS-QP5050A “Shimadzu”. The hydrocarbon composition of asphaltene cracking products obtained in supercritical water differs in qualitative and quantitative characteristics from products obtained without water. When cracking asphaltenes in the water environment, the composition changes significantly compared to the “control experiment”, an increase in the proportion of saturated hydrocarbons is noted. The cracking products obtained in water with the addition of a catalyst are also dominated by saturated hydrocarbons, while the content of phthalates, alkenes and sulfur-containing compounds significantly increases.

Texto integral

Acesso é fechado

Sobre autores

Kh. Nal’gieva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nalgieva.1997@gmail.com
Rússia, 634055 Tomsk

G. Pevneva

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: pevneva@ipc.tsc.ru
Rússia, 634055 Tomsk

N. Voronetskaya

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: voronetskaya@ipc.tsc.ru
Rússia, 634055 Tomsk

M. Kopytov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: kma@ipc.tsc.ru
Rússia, 634055 Tomsk

Bibliografia

  1. Кривцов Е.Б., Гончаров А.В., Свириденко Ю.А., Мержигот М.И. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2023. V. 66. № 11. P. 32. https://doi.org/10.6060/ivkkt.20236611.15t
  2. Goncharov A.V., Krivtsov E.B., Sviridenko N.N., Golovko A.K. // IOP Conference Series: Materials Science and Engineering. 2019. V. 597. P. 012022. https://doi.org/10.1088/1757-899X/597/1/012022
  3. Wang, T., Xu J., Liu X., He M. // J. of CO2 Utilization. 2022. V. 66. P. 102248. https://doi.org/10.1016/j.jcou.2022.102248
  4. Sharan P., Thengane S.K., Yoon T.J., Lewis J.C., Singh R., Currier R.P., Findikoglu A.T. // Desalination. 2022. V. 532. P. 115716. https://doi.org/10.1016/j.desal.2022.115716
  5. Song Z., Xiu F.R., Qi Y. // J. of Hazardous Materials. 2022. V. 423. P. 127018. https://doi.org/10.1016/j.jhazmat.2021.127018
  6. Isa K.M., Snape C.E., Uguna C., Meredith W., Deng H. // J. of Analytical and Applied Pyrolysis. 2016. V. 119. P. 180. https://doi.org/10.1016/j.jaap.2016.03.004
  7. Yu J., Jiang C., Guan Q., Gu J., Ning P., Miao R., Zhang J. // Fuel. 2018. V. 217. P. 275. https://doi.org/10.1016/j.fuel.2017.12.113
  8. Yesodharan S. // Current Science. 2002. V. 82. P. 1112. http://www.jstor.org/stable/24106796
  9. Bermejo M.D., Cocero M.J. // American Institute Chemical Engineering J. 2006. V. 52. P. 3933. https://doi.org/10.1002/aic.10993
  10. Kruse A., Dinjus E. // J. Supercritical Fluids. 2007. V. 41. P. 361. https://doi.org/10.1016/j.supflu.2006.12.006
  11. Каюмов Р.А., Сагдеев А.А., Галимова А.Т., Гумеров Ф.М., Усманов Р.А. // Вестник Казанского технологического университета. 2012. V. 15. № 1. P. 43.
  12. Свириденко Н.Н. // Нефтехимия. 2023. V. 63. № 3. P. 391-400. https://doi.org/10.31857/S0028242123030097
  13. Копытов М.А., Головко А.К. // Нефтехимия. 2017. V. 57. №. 1. P. 41. https://doi.org/10.7868/S0028242116060137
  14. Нальгиева Х.В., Копытов М.А. // ХТТ. 2024. № 2. P. 23. https://doi.org/10.31857/S0023117724020059 [Solid Fuel Chemistry, 2024, vol. 58, no. 2. p. 103. https://doi.org/10.3103/S0361521924020083]
  15. Hosseinpour M., Fatemi S., Ahmadi S.J. // Fuel. 2015. V. 159. P. 538. https://doi.org/10.1016/j.fuel.2015.06.086
  16. Туманян Б.П., Петрухина Н.Н., Каюкова Г.П., Нургалиев Д.К., Фосс Л.Е., Романов Г.В. // Успехи химии. 2015. V. 84. №. 11. P. 1145. EDN: VBEXXR
  17. Golovko A.K., Pevneva G.S., Kontorovich A.E. // Geochemistry International. 2000. V. 38. No. 3. P. 246. EDN: LFZJRR.
  18. Антипенко В.Р. Термические превращения высокосернистого природного асфальтита: геохимические и технологические аспекты. Новосибирск: Недра, 2013. 181 c.
  19. Головко А.К., Конторович А.Э., Певнева Г.С., Фурсенко Е.А. // Геология и геофизика. 2014. V. 55. №. 5-6. P. 931. EDN: SMXAXD

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Composition of asphaltene cracking products.

Baixar (327KB)
3. Fig. 2. Mass fragmentograms of n-alkanes (m/z 57) and methylalkylbenzenes (AT m/z 105) of the products of the control experiment (a), (b), cracking in SCR (c), (d) and cracking in SCR + cat. (d), (e).

Baixar (563KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025