Contribution of Natural and Anthropogenic Factors to the Formation of Spatial Structure and Composition of Forest Cover in the Moscow Region
- 作者: Chernenkova T.V.1, Belyaeva N.G.1, Kotlov I.P.2, Novikov A.S.1
-
隶属关系:
- Institute of Geography of the RAS
- Severtsov Institute of Ecology and Evolution
- 期: 编号 2 (2025)
- 页面: 153-170
- 栏目: RESEARCH
- URL: https://bulletin.ssaa.ru/0024-1148/article/view/686651
- DOI: https://doi.org/10.31857/S0024114825020013
- EDN: https://elibrary.ru/FXKEYO
- ID: 686651
如何引用文章
详细
Identification of the leading factors determining forest cover differentiation is a still understudied topic in ecology and biogeography. This study’s objective is to assess the contribution of natural and anthropogenic factors to the formation of modern forest cover diversity on the example of the Moscow region. As a result of classification of 1032 field relevés, 13 vegetation community types were identified based on the dominant forest-forming tree species and phytocenotic spectra of plants in subordinate layers. Using statistical methods, the heterogeneity of the identified community types’ floristic composition and the accuracy of their classification were assessed, and the ordination of communities in the ecological framework was done. The relationship of community types with biotopic local factors was analysed using Ellenberg scales. Most pairs of identified community types differed significantly by the results of Duncan’s test (p < 0.05) for all biotope properties. A list of indicator species for the identified community types (IndVal) was compiled. It was also shown that the most significant local factors determining the identified community types were soil acidity, nutrient abundance and moisture. At the upper spatial level, community variability was studied in relation to external environmental factors based on global spatial databases, and the relationship with individual forest cover fragmentation indicators was assessed. Among the most significant factors were the climatic ones (average annual temperatures and precipitation). Terrain (elevation above sea level) also significantly affected the composition of communities. Anthropogenic factors (distance from settlements, forest cover fragmentation) had a smaller impact on the differentiation of community types compared to natural ones.
全文:

作者简介
T. Chernenkova
Institute of Geography of the RAS
编辑信件的主要联系方式.
Email: chernenkova50@mail.ru
俄罗斯联邦, Staromonetniy ln., 29, Moscow, 119017
N. Belyaeva
Institute of Geography of the RAS
Email: chernenkova50@mail.ru
俄罗斯联邦, Staromonetniy ln., 29, Moscow, 119017
I. Kotlov
Severtsov Institute of Ecology and Evolution
Email: chernenkova50@mail.ru
俄罗斯联邦, Leninsky ave., 33, Moscow, 119071
A. Novikov
Institute of Geography of the RAS
Email: chernenkova50@mail.ru
俄罗斯联邦, Staromonetniy ln., 29, Moscow, 119017
参考
- Ahmed O.S., Wulder M.A., White J.C., Hermosilla T., Coops N.C., Franklin S.E., Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario, Remote Sensing Letters, 2017, Vol. 8, No. 1, pp. 29—37.
- Akinyemi F.O., Tlhalerwa L.T., Eze P.N., Land degradation assessment in an African dryland context based on the Composite Land Degradation Index and mapping method, Geocarto International, 2021, Vol. 36, No. 16, pp. 1838—1854.
- Annenskaya G.N., Zhuchkova V.K., Kalinina V.R., Mamai I.I., Nizovtsev V.A., Khrustaleva M.A., Tsesel’chuk Y.N., Landshafty Moskovskoi oblasti i ikh sovremennoe sostoyanie (Landscapes of Moscow Oblast and the current state), Smolensk: Izd-vo SGU, 1997, 296 p.
- Balmford A., Bond W., Trends in the state of nature and their implications for human well-being, Ecology Letters, 2005, Vol. 8, No. 11, pp. 1218—1234.
- Batjes N.H., Ribeiro E., van Oostrum A., Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019), Earth System Science Data, 2020, Vol. 12, No. 1, pp. 299—320.
- Chernen’kova T.V., Kotlov I.P., Belyaeva N.G., Suslova E.G., Morozova O.V., Otsenka i kartografirovanie tsenoticheskogo raznoobraziya lesov Moskovskogo regiona (Assessment and mapping of the cenotic diversity of the Moscow region’s forests), Lesovedenie, 2022, No. 6, pp. 617—630.
- Chernenkova T.V., Morozova O.V., Classification and Mapping of Coenotic Diversity of Forests, Contemporary Problems of Ecology, 2017, Vol. 10, No. 7, pp. 738—747.
- Chernen’kova T.V., Suslova E.G., Morozova O.V., Belyaeva N.G., Kotlov I.P., Bioraznoobrazie lesov Moskovskogo regiona (Forest biodiversity of Moscow region), Ekosistemy: ekologiya i dinamika, 2020, Vol. 4, No. 3, pp. 61—144.
- Cushman S.A., McGarigal K., McKelvey K., Vojta C.D., Reagan C.M., Analysis for Habitat Monitoring, USFS Wildlife Habitat Technical Guide, 2013.
- Czerepanov S.K., Vascular plants of Russia and adjacent states (the former USSR), Cambridge: Cambridge university press, 1995, 516 p.
- Dufrêne M., Legendre P., Species Assemblages and Indicator Species: the Need for a Flexible Asymmetrical Approach, Ecological Monographs, 1997, Vol. 67, No. 3, pp. 345—366.
- Ellenberg H., Vegetation Ecology of Central Europe, Cambridge: Cambridge University Press, 1988.
- Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., Paulissen D., Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica, 1991, Vol. 18, pp. 1—248.
- Fick S.E., Hijmans R.J., WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, International Journal of Climatology, 2017, Vol. 37, No. 12, pp. 4302—4315.
- Forman R.T.T., Godron M., Landscape Ecology, New York: John Wiley and Sons Ltd., 1986, 620 p.
- Gribova S.A., Isachenko T.I., Lavrenko E.M., Rastitel’nost’ evropeiskoi chasti SSSR (The vegetation of the European part of the USSR), Leningrad: Nauka, 1980, 429 p.
- Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman, S.V., Goetz S.J., Loveland T.R., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850—853.
- Hengl T., Gupta S., Soil water content (volumetric%) for 33kPa and 1500kPa suctions predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, 2019.
- Hengl T., Soil pH in H2O at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, 2018.
- Hengl T., Wheeler I., Soil organic carbon content in x 5 g / kg at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution, 2018.
- Hutchinson G.E., Concluding Remarks, Cold Spring Harbor Symposia on Quantitative Biology, 1957, Vol. 22, pp. 415—427.
- Ignatov M.S., Ignatova E.A., Flora mkhov srednei chasti evropeiskoi Rossii (The mosses flora in Central Russia), Moscow: KMK, 2003, Vol. 1—2, 960 p.
- Kotlov I., Chernenkova T., Belyaeva N., Urban forests of Moscow: typological diversity, succession status, and fragmentation assessment, Landscape Ecology, 2023, Vol. 38, No. 12, pp. 3767—3789.
- Kotlov I.P., Prostranstvennaya struktura lesnogo pokrova Moskovskoi oblasti (otsenka na osnove kolichestvennykh metrik fragmentatsii). Avtoref. diss. kandidata biologicheskikh nauk (Spatial structure of forest cover in Moscow region (assessment based on quantitative fragmentation metrics). Extended abstract of Candidate’s biol. sci. thesis), Moscow: IPEE RAN, 2023, 165 p.
- Lesnoi plan Moskovskoi oblasti na 2019—2028 gody, (Forest plan of the Moscow region for 2019—2028. Book 1 and 2), available at: https://klh.mosreg.ru/dokumenty/napravleniya-deyatelnosti/lesnoe-planirovanie/proekty-dokumentov-lesnogo-planirovaniya/26-09-2023-12-19-27-lesnoy-plan-moskovskoy-oblasti-na-2019-2028-gody-k?utm_referrer=https%3a%2f%2fwww.google.com%2f (September 01, 2024)
- Litvinenko L.N., Kalinina A.A., Raspredelenie osadkov na territorii Moskovskoi oblasti pri nalichii i otsutstvii krupnogo antropogennogo obrazovaniya (Territorial distribution of precipitation in the Moscow region in the presence and absence of the large anthropogenic formation), Ekologiya urbanizirovannykh territorii, 2018, No. 2, pp. 66—71.
- Loreau M., Hector A., Partitioning selection and complementarity in biodiversity experiments, Nature, 2001, Vol. 412, No. 6842, pp. 72—76.
- McBratney A.B., Mendonça Santos M.L., Minasny B., On digital soil mapping, Geoderma, 2003, Vol. 117, No. 1, pp. 3—52.
- Mücher C.A., Klijn J.A., Wascher D.M., Schaminée J.H.J., A new European Landscape Classification (LANMAP): A transparent, flexible and user-oriented methodology to distinguish landscapes, Ecological Indicators, 2010, Vol. 10, No. 1, pp. 87—103.
- Osipov V.V., Gavrilova N.K., Agrarnoe osvoenie i dinamika lesistosti Nechernozemnoi zony RSFSR (Agrarian development and dynamics of forest cover in the Non-Chernozem zone of the RSFSR), Moscow: Nauka, 1983, 108 p.
- Potapov P., Hansen M.C., Pickens A., Hernandez-Serna A., Tyukavina A., Turubanova S., Zalles V., Li X., Khan A., Stolle F., Harris N., Song X.-P., Baggett A., Kommareddy I., Kommareddy A., The Global 2000—2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results, Frontiers in Remote Sensing, 2022, Vol. 3.
- Potere D., Schneider A., Angel Sh., Civco D.L., Mapping urban areas on a global scale: which of the eight maps now available is more accurate?, International Journal of Remote Sensing, 2009, Vol. 30, No. 24, pp. 6531—6558.
- Pshegusov R.K., Tembotova F.A., Sablirova Y.M., Osnovnye zakonomernosti prostranstvennoi lokalizatsii razlichnykh tipov khvoinykh i khvoino-shirokolistvennykh lesov severnogo makrosklona Zapadnogo Kavkaza po materialam distantsionnogo zondirovaniya Zemli (The main regularities of the spatial localization of various types of the coniferous and coniferous-deciduous forests of the north macroslope of Western Caucasus by earth remote sensing materials), Voprosy lesnoi nauki, 2019, Vol. 2, No. 3, pp. 1—11.
- R Core Team, European Environment Agency, 2020, available at: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (April 19, 2024).
- Rocchini D., Lenoir J., Remote sensing at the interface between ecology and climate sciences, Meteorological Applications, 2021, Vol. 28, No. 5, pp. 1—6.
- Spiecker H., Silvicultural management in maintaining biodiversity and resistance of forests in Europe — temperate zone, Journal of environmental Management, 2003, Vol. 67, No. 1, pp. 55—65.
- SRTM 90m Digital Elevation Database, CGIAR Platform for Big Data in Agriculture, available at: https://bigdata.cgiar.org/srtm-90m-digital-elevation-database/ (April 19, 2024).
- Tichý L., JUICE, software for vegetation classification, Journal of Vegetation Science, 2002, Vol. 13, No. 3, pp. 451—453.
- Tishkov A.A., Aktual’naya biogeografiya kak metodologicheskaya osnova sokhraneniya bioraznoobraziya (Actual biogeography: a methodological basis for conservation of biodiversity), In: Voprosy geografii. Aktual’naya biogeografiya (Problems of geography. Actual biogeography), Moscow: Kodeks, 2012, Vol. 134, pp. 15—57.
- Top 10 Lists, World Resources Institute Research, 2024, available at: https://research.wri.org/gfr/top-ten-lists (September 01, 2024).
- Tronin A.A., Gornyy V.I., Kritsuk S.G., Latypov I. Sh., Nighttime lights as a quantitative indicator of anthropogenic load on ecosystems, Current Problems in Remote Sensing of the Earth from Space, 2014, Vol. 11, No. 1, pp. 237—244.
- Wang Z., Shrestha R., Yao T., Kalb V. Black Marble User Guide (Version 1.2), 2021, available at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/VIIRS_Black_Marble_UG_v1.2_April_2021.pdf (April 19, 2024).
- Zhang X., Liu L., Chen X., Xie Sh., Gao Y., Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach, Remote Sensing, 2019, Vol. 11, No. 9, 1056.
补充文件
