Удельное сопротивление циркония в окрестности плавления: эксперимент и первопринципный расчет

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены данные об удельном электрическом сопротивлении циркония в твердом и жидком состояниях в окрестности плавления, полученные в экспериментах по импульсному нагреву проволочек, а также в расчетах методом квантовой молекулярной динамики с использованием формулы Кубо–Гринвуда. Проанализировано влияние примеси гафния на результаты расчетов и измерений.

Полный текст

Доступ закрыт

Об авторах

А. В. Дороватовский

Объединенный институт высоких температур РАН

Email: minakovd@jiht.ru
Россия, Москва

М. А. Шейндлин

Объединенный институт высоких температур РАН

Email: minakovd@jiht.ru
Россия, Москва

В. Б. Фокин

Объединенный институт высоких температур РАН

Email: minakovd@jiht.ru
Россия, Москва

Д. В. Минаков

Объединенный институт высоких температур РАН

Автор, ответственный за переписку.
Email: minakovd@jiht.ru
Россия, Москва

Список литературы

  1. CRC Handbook of Chemistry and Physics. 89th ed. / Ed. Lide D.R. Boca Raton: CRC Press, 2008–2009. 2736 p.
  2. Минцев В.Б. Динамические методы в физике неидеальной плазмы. Начало // ТВТ. 2021. Т. 59. № 6. С. 885.
  3. Ломоносов И.В., Фортова С.В. Широкодиапазонные полуэмпирические уравнения состояния вещества для численного моделирования высокоэнергетических процессов // ТВТ. 2017. Т. 55. № 4. С. 596.
  4. Ткаченко С.И., Хищенко К.В., Воробьев В.С., Левашов П.Р., Ломоносов И.В., Фортов В.Е. Метастабильные состояния жидкого металла при электрическом взрыве // ТВТ. 2001. Т. 39. № 5. С. 728.
  5. Minakov D.V., Paramonov M.A., Levashov P.R. Consistent Interpretation of Experimental Data for Expanded Liquid Tungsten near the Liquid–Gas Coexistence Curve // Phys. Rev. B. 2018. V. 97. № 2. P. 024205.
  6. Minakov D.V., Paramonov M.A., Levashov P.R. Thermophysical Properties of Liquid Molybdenum in the Near-critical Region Using Quantum Molecular Dynamics // Phys. Rev. B. 2021. V. 103. № 18. P. 184204.
  7. Minakov D.V., Paramonov M.A., Levashov P.R. Interpretation of Pulse-heating Experiments for Rhenium by Quantum Molecular Dynamics // High Temp. – High Press. 2020. V. 49. № 1–2. P. 211.
  8. Minakov D.V., Paramonov M.A., Levashov P.R. Ab Initio Inspection of Thermophysical Experiments for Molybdenum near Melting // AIP Adv. 2018. V. 8. № 12. P. 125012.
  9. Paramonov M.A., Minakov D.V., Fokin V.B., Knyazev D.V., Demyanov G.S., Levashov P.R. Ab Initio Inspection of Thermophysical Experiments for Zirconium near Melting // J. Appl. Phys. 2022. V. 132. № 6. P. 065102.
  10. Knyazev D.V., Levashov P.R. Ab Initio Calculation of Transport and Optical Poperties of Aluminum: Influence of Simulation Parameters // Comput. Mater. Sci. 2013. V. 79. P. 817.
  11. Савватимский А.И., Коробенко В.Н. Высокотемпературные свойства металлов атомной энергетики (цирконий, гафний и железо при плавлении и в жидком состоянии). М.: Изд-во МЭИ, 2012. 216 с.
  12. Коробенко В.Н., Савватимский А.И. Свойства твердого и жидкого циркония // ТВТ. 1991. Т. 29. № 5. С. 883.
  13. Коробенко В.Н., Савватимский А.И. Измерение температуры циркония от температуры плавления до 4100 K с применением моделей черного тела в жидком состоянии // ТВТ. 2001. Т. 39. № 3. С. 518.
  14. Костановский А.В., Костановская М.Е. Определение теплоемкости в экспериментах импульсного электрического нагрева // ТВТ. 2021. Т. 59. № 5. С. 790.
  15. Коробенко В.Н., Савватимский А.И. Удельная теплоемкость жидкого циркония до 4100 К // ТВТ. 2001. Т. 39. № 5. С. 712.
  16. Савватимский А.И. Теплоемкость и электросопротивление металлов Ta и W от точки плавления до 7000 К при импульсном нагреве током // ТВТ. 2021. Т. 59. № 5. С. 686.
  17. Korobenko V.N., Savvatimski A.I., Sevostyanov K.K. Experimental Investigation of Solid and Liquid Zirconium // High Temp. – High Press. 2001. V. 33. № 6. P. 647.
  18. Савватимский А.И., Онуфриев С.В., Вальяно Г.Е., Киреева А.Н., Патрикеев Ю.Б. Электрическое сопротивление жидкого гадолиния (с содержанием углерода 29 ат. %) для температур 2000–4250 К // ТВТ. 2020. Т. 58. № 1. С. 148.
  19. Коробенко В.Н., Савватимский А.И. Температурная зависимость плотности и удельного электросопротивления жидкого циркония до 4100 K // ТВТ. 2001. Т. 39. № 4. С. 566.
  20. Korobenko V.N., Agranat M.B., Ashitkov S.I., Savvatimski A.I. Zirconium and Iron Densities in a Wide Range of Liquid States // Int. J. Thermophys. 2002. V. 23. P. 307.
  21. Коробенко В.Н., Савватимский А.И. Свойства жидкого циркония до 4100 К // ЖФХ. 2003. Т. 77. № 10. С. 1742.
  22. Беликов Р.С. Экспериментальное исследование теплофизических свойств системы Mo–C эвтектического состава и графита при высоких температурах. Дис. … канд. физ.-мат. наук. М.: ОИВТ РАН, 2018.
  23. Knyazev D.V., Levashov P.R. Thermodynamic, Transport, and Optical Properties of Dense Silver Plasma Calculated Using the Greekup Code // Contrib. Plasma Phys. 2019. V. 59. № 3. P. 345.
  24. Demyanov G.S., Knyazev D.V., Levashov P.R. Continuous Kubo–Greenwood Formula: Theory and Numerical Implementation // Phys. Rev. E. 2022. V. 105. № 3. P. 035307.
  25. Kresse G., Hafner J. Ab Initio Molecular Dynamics for Liquid Metals // Phys. Rev. B. 1993. V. 47. № 1. P. 558.
  26. Blöchl P.E. Projector Augmented-wave Method // Phys. Rev. B. 1994. V. 50. № 24. P. 17953.
  27. Fokin V., Minakov D., Levashov P. Ab Initio Calculations of Transport and Optical Properties of Dense Zr Plasma Near Melting // Symmetry. 2022. V. 15. № 1. P. 48.
  28. Desai P.D., James H.M., Ho C.Y. Electrical Resistivity of Vanadium and Zirconium // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1097.
  29. Milošević N.D., Maglić K.D. Thermophysical Properties of Solid Phase Zirconium at High Temperatures // Int. J. Thermophys. 2006. V. 27. P. 1140.
  30. Пелецкий В.Э., Бельская Э.А. Электрическое сопротивление тугоплавких металлов. Справ. М.: Энергоиздат, 1981.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема экспериментальной установки по импульсному нагреву: 1 – образец в камере высокого давления; 2 – керамический изолятор; 3 – сапфировое окно; 4 – электроввод (бронза); 5 – управляемый разрядник; 6 – трансформатор тока; 7 – камера теневой съемки; 8 – пирометр; 9 – лазер подсветки 660 нм; 10 – дихроическое зеркало; 11 – сменные защитные стекла; 12 – подача газа, гелий 1–7000 бар.

Скачать (140KB)
3. Рис. 2. Удельное сопротивление циркония в зависимости от молярной энтальпии (данная работа): 1 – йодидный цирконий; 2 – цирконий марки Alfa Aesar (1.5% Hf); 3 – результаты расчета КМД + КГ; 4 – результаты расчета КМД + КГ, отнесенные к начальному объему; штриховая линия – линейная аппроксимация расчетных точек для β-Zr и жидкости; 5 – [19], 6 – [12].

Скачать (83KB)
4. Рис. 3. Удельное сопротивление циркония в зависимости от температуры (данная работа): 1 – йодидный цирконий; 2 – цирконий марки Alfa Aesar (1.5% Hf); 3 – йодидный цирконий с коррекцией на объем из первопринципных расчетов; 4 – расчеты КМД + КГ; 5 – [19], 6 – [17], 7 – [29], 8 – [30], 9 – [28].

Скачать (74KB)

© Российская академия наук, 2024