Self-Organization of Clusters of Active Brownian Particles in a Colloidal Plasma under the Action of Laser Radiation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Clusters of active Brownian particles in gas-discharge plasma are considered as open systems with energy exchange with the environment. The evolution of a cluster of 19 active Brownian particles with a partially absorbing metal surface (so-called Janus particles) when exposed to intense laser radiation is shown. The formation of strongly correlated clusters of charged particles with increasing laser radiation power was observed experimentally. Based on an analysis of the trajectories of particles, the region of their localization, and changes in their kinetic energy, fractal dimension, and dynamic entropy for different values of laser radiation power density, the self-organization of a cluster of strongly interacting particles in the plasma of a high-frequency glow discharge is studied.

作者简介

M. Vasiliev

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: vasiliev@ihed.ras.ru
Moscow, Russia

A. Alekseevskaya

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: vasiliev@ihed.ras.ru
Moscow, Russia

K. Koss

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: vasiliev@ihed.ras.ru
Moscow, Russia

E. Vasilieva

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: vasiliev@ihed.ras.ru
Moscow, Russia

O. Petrov

Joint Institute for High Temperatures, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vasiliev@ihed.ras.ru
Moscow, Russia

参考

  1. Ebeling W., Feistel R. Physics of Self-organization and Evolution. Weinheim: Wiley‒VCH, 2011.
  2. Prigogine I., Nicolis G., Babloyantz A. Thermodynamics of Evolution // Phys. Today. 1972. V. 25. № 11. P. 23.
  3. Petrosky T.Y., Prigogine I. Laws and Events: The Dynamical Basis of Self-organization // Canad. J. Phys. 1990. V. 68. № 9. P. 670.
  4. Shields C.W. IV, Velev O.D. The Evolution of Active Particles: Toward Externally Powered Self-propelling and Self-reconfiguring Particle Systems // Chem. 2017. V. 3. № 4. P. 539.
  5. Petrov O.F., Statsenko K.B., Vasiliev M.M. Active Brownian Motion of Strongly Coupled Charged Grains Driven by Laser Radiation in Plasma // Sci. Rep. 2022. V. 12. № 1. P. 8618.
  6. Su H., Hurd Price C.A., Jing L., Tian Q., Liu J., Qian K. Janus Particles: Design, Preparation, and Biomedical Applications // Mater. Today Bio. 2019. V. 4. P. 100033.
  7. Deng D., Argon A.S., Yip S. A Molecular Dynamics Model of Melting and Glass Transition in an Idealized Two-dimensional Material I // Phil. Trans. R. Soc. Lond. A. 1989. V. 329. 549.
  8. Allegrini P., Douglas J.F., Glotzer S.C. Dynamic Entropy as a Measure of Caging and Persistent Particle Motion in Supercooled Liquids // Phys. Rev. E. 1999. V. 60. P. 5714.
  9. Gaspard P., Wang X.-J. Noise, Chaos, and (ε, τ)-Entropy per Unit Time // Phys. Rep. 1993. V. 235. № 6. P. 291.
  10. Gaspard P., Nicolis G. Transport Properties, Lyapunov Exponents, and Entropy per Unit Time // Phys. Rev. Lett. 1990. V. 65. P. 1693.
  11. Mandelbrot B.B. The Fractal Geometry of Nature. San Francisco: W.H. Freeman and Co., 1982.
  12. Koss X.G., Petrov O.F., Statsenko K.B., Vasiliev M.M. Small Systems of Laser-driven Active Brownian Particles: Evolution and Dynamic Entropy // EPL. 2018. V. 124. P. 45 001.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (61KB)
3.

下载 (140KB)
4.

下载 (534KB)
5.

下载 (19KB)
6.

下载 (94KB)
7.

下载 (105KB)
8.

下载 (110KB)
9.

下载 (112KB)

版权所有 © М.М. Васильев, А.А. Алексеевская, К.Г. Косс, Е.В. Васильева, О.Ф. Петров, 2023