Characteristics of a Solid Oxide Fuel Cell for the Thermodynamic Modeling of Power Plants

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The thermodynamic characteristics of the electrochemical process in a solid oxide fuel cell (SOFC) are determined using a physical model that takes into account the internal reforming of methane. These characteristics can be a useful tool for studying the thermodynamic cycles of power plants without calculating the physical processes in the fuel cell. The initial data when using them are the load factor and the specific surface resistance of the membrane-electrode assembly.

Авторлар туралы

A. Zhuk

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: peter-p-ivanov@yandex.ru
Moscow, Russia

P. Ivanov

Joint Institute for High Temperatures, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: peter-p-ivanov@yandex.ru
Moscow, Russia

Әдебиет тізімі

  1. Zhang X., Chan S.H., Li G., Hob H.K., Li J., Feng Z. A Review of Integration Strategies for Solid Oxide Fuel Cells // Journal of Power Sources. 2010. V. 195. P. 685.
  2. Glenk G., Reichelstein S. Reversible Power-to-gas Systems for Energy Conversion and Storage // Nature Commun. 2022. V. 13. 2010.
  3. Elharati M.A., Dewa M., Bkour Q., Hussain A.M., Miura Y., Dong S., Fukuyama Y., Dale N., Marin-Flores O.G., Ha S. Internal Reforming SOFC System Operating under Direct Ethanol Feed Condition // Energy Technology. 2020. V. 8. № 9. 2000350.
  4. Singh P., Hu B. Advanced Anode for Internal Reforming and Thermal Management in Solid Oxide Fuel Cells. Final Report, DE-FE-0031182. University of Connecticut, 2020.
  5. Dokmaingam P., Irvine J.T.S., Assabumrungrat S., Charojrochkul S., Laosiripojana N. Modeling of IT-SOFC with Indirect Internal Reforming Operation Fueled by Methane: Effect of Oxygen Adding as Autothermal Reforming // Int. J. Hydrogen Energy. 2010. V. 35. P. 13271.
  6. Иванов П.П. Термодинамическое моделирование энергетических установок с твердооксидным топливным элементом // ТВТ. 2011. Т. 49. № 4. С. 627.
  7. Hussain M.M., Li X., Dincer I. Mathematical Modeling of Planar Solid Oxide Fuel Cells // J. Power Sources. 2006. V. 161. P. 1012.
  8. Hussain M.M., Li X., Dincer I. A General Electrolyte-electrode-assembly Model for the Performance Characteristics of Planar Anode-supported Solid Oxide Fuel Cells // J. Power Sources. 2009. V. 189. P. 916.
  9. Zhu H., Kee R.J., Janardhanan V.M. et al. Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid Oxide Fuel Cells // J. Electrochem. Soc. 2005. V. 152. P. A2427.
  10. Suwanwarangkul R., Croiset E., Entchev E. et al. Experimental and Modeling Study of Solid Oxide Fuel Cell Operating with Syngas Fuel // J. Power Sources. 2006. V. 161. P. 308.
  11. Sunde S. Simulations of Composite Electrodes in Fuel Cells // J. Electroceramics. 2000. V. 5(2). P. 153.
  12. Jiang Y., Virkar A.V. Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode-Supported SOFCs // J. Electrochem. Soc. 2003. V. 150. P. A942.
  13. Жук А.З., Иванов П.П., Киселева Е.А. Моделирование электрохимического преобразования химической энергии биотоплива в электричество // ТВТ. 2020. Т. 58. № 2. С. 300.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (22KB)
3.

Жүктеу (38KB)
4.

Жүктеу (32KB)
5.

Жүктеу (33KB)

© А.З. Жук, П.П. Иванов, 2023