Crystal polymorphism of the double pseudopolymeric gold(III)-thallium(III) dithiocarbamato-chlorido complex of [Au(S2CNPr2)2][TlCl4]: preparation, self-assembly of supramolecular architectures, and thermal behavior

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The interaction of thallium(I) N,N-dipropyldithiocarbamate with [AuCl4] anions in a 2M HCl medium was studied. The heterogeneous reaction of gold(III) binding from solution to the solid phase, including the red-ox process, results in the formation of a double dithiocarbamato-chlorido complex of [Au(S2CNPr2)2][TlCl4]. The crystals of the obtained compound are characterized by their ability to polymorphism: at 220 K the complex exists in the form of the α-modification (α-I), while at 296 K the β-modification (β-I) is stable. The α-I/β-I structures include 4/2 nonequivalent square-planar cations of [Au(S2CNPr2)2]+ (A, 2 B, C/A, B) and 2/1 distorted tetrahedral anions [TlCl4]. Self-assembly of these structural units, which are combined due to interionic secondary interactions (the most important of which are chalcogen bonds S···Cl), leads to the formation of the complicated supramolecular architectures such as cation-anionic pseudo-polymeric ribbons. Alternating along the edges of these ribbons and acting as double linkers, thallium(III) anions pairwise combine neighboring isomeric complex cations of [Au(S2CNPr2)2]+, which are localized in the central part of the ribbons. When studying the thermal behavior of the complex, TlCl and elemental gold were identified as individual thermolysis products, which are quantitatively reduced and crystallized under low-temperature conditions (up to 300°C).

About the authors

O. A. Bredyuk

Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Ryolochny Lane 1, Blagoveschensk, 675000 Russia

S. V. Zinchenko

Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Irkutsk, 664033 Russia

A. I. Smolentsev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: alexander.v.ivanov@chemist.com
Novosibirsk, 630090 Russia

A. V. Ivanov

Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: alexander.v.ivanov@chemist.com
Ryolochny Lane 1, Blagoveschensk, 675000 Russia

References

  1. Иванов А.В., Бредюк О.А., Герасименко А.В. и др. // Коорд. химия. 2006. Т. 32. № 5. С. 354.
  2. Gomathi G., Thirumaran S., Ciattini S. // Polyhedron. 2015. V. 102. P. 424. https://doi.org/10.1016/j.poly.2015.09.071
  3. Manar K.K., Rajput G., Yadav M.K. et al. // Chem. Select. 2016. V. 1. № 18. P. 5733. https://doi.org/10.1002/slct.201601280
  4. Бредюк О.А., Лосева О.В., Иванов А.В. и др. // Коорд. химия. 2017. Т. 43. № 10. С. 602. https://doi.org/10.7868/S0132344X17100012
  5. Sivagurunathan G.S., Ramalingam K., Rizzoli C. // Polyhedron. 2013. V. 65. P. 316. https://doi.org/10.1016/j.poly.2013.08.007
  6. Rizzoli C., Ramalingam K., Alexander N. // Acta Crystallogr., Sect. E. 2008. V. 64. P. m1020. https://doi.org/10.1107/S1600536808021004
  7. Abrahamson H., Heiman J.R, Pignolet L.H. // Inorg. Chem. 1975. V. 14. № 9. P. 2070. https://doi.org/10.1021/ic50151a011
  8. Sánchez-Chapul L., Santamaría A., Aschner M. et al. // Front. Genet. 2023. V. 14. P. 1168713. https://doi.org/10.3389/fgene.2023.1168713
  9. Rodríguez-Mercado J.J., Altamirano-Lozano M.A. // Drug Chem. Toxicol. 2013. V. 36. № 3. P. 369. https://doi.org/10.3109/01480545.2012.710633
  10. Mahmoud G.A.-E., Mayer P., Gaber D.A., Ibrahim A.B.M. // Inorg. Chem. Commun. 2023. V. 156. P. 111283. https://doi.org/10.1016/j.inoche.2023.111283
  11. Abdolmaleki S., Ghadermazi M., Aliabadi A. // Sci. Rep. 2021. V. 11. P. 15699. https://doi.org/10.1038/s41598-021-95278-y
  12. Иванов А.В., Бредюк О.А., Лосева О.В., Анцуткин О.Н. // Журн. неорган. химии. 2016. Т. 61. № 6. С. 792. https://doi.org/10.7868/S0044457X16060106
  13. Иванов А.В., Бредюк О.А., Лосева О.В., Родина Т.А. // Коорд. химия. 2015. Т. 41. № 2. С. 107. https://doi.org/10.7868/S0132344X15020024
  14. Бредюк О.А., Лосева О.В., Родина Т.А. и др. // Журн. общ. химии. 2023. Т. 93. № 9. С. 1413. https://doi.org/10.31857/S0044460X2309010X
  15. Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
  16. Nilson L., Hesse R. // Acta Chem. Scand. 1969. V. 23. № 6. P. 1951. https://doi.org/10.3891/acta.chem.scand.23-1951
  17. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
  18. Sheldrick G.M. // Acta Crystallogr., Sect. С. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  19. Soundararajan G., Subbaiyan M. // Sep. Sci. Technol. 1983. V. 18. № 7. P. 645. https://doi.org/10.1080/01496398308060301
  20. John Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=3bc58nspq87 https://spectrabase.com/spectrum/2cFUfohDlZT (accessed January 2025).
  21. John Wiley & Sons, Inc. SpectraBase; SpectraBase Compound ID=F6dQw2iZVxu https://spectrabase.com/spectrum/TtHVh9ptgq (accessed January 2025).
  22. Brown D.A., Glass W.K., Burke M.A. // Spectrochim. Acta. Part A. 1976. V. 32. № 1. P. 137. https://doi.org/10.1016/0584-8539(76)80059-1
  23. Kellner R., Nikolov G.S., Trendafilova N. // Inorg. Chim. Acta. 1984. V. 84. № 2. P. 233. https://doi.org/10.1016/S0020-1693(00)82413-5
  24. Rodina T.A., Loseva O.V., Smolentsev A.I. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119630. https://doi.org/10.1016/j.ica.2020.119630
  25. Korneeva E.V., Lutsenko I.A., Zinchenko S.V. et al. // Inorg. Chim. Acta. 2024. V. 572. P. 122318. https://doi.org/10.1016/j.ica.2024.122318
  26. Rodina T.A., Ivanov A.V., Gerasimenko A.V. et al. // Polyhedron. 2012. V. 40. № 1. P. 53. https://doi.org/10.1016/j.poly.2012.03.043
  27. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  28. Yang L., Powel D.R., Houser R.P. // Dalton Trans. 2007. № 9. P. 955. https://doi.org/10.1039/B617136B
  29. Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1. https://doi.org/10.1016/S0065-2792(08)60016-3
  30. Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031.
  31. Hu S.-Z., Zhou Z.-H., Xie Z.-X., Robertson B.E. // Z. Kristallogr. 2014. V. 229. № 7. P. 517. https://doi.org/10.1515/zkri-2014-1726
  32. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
  33. Заева А.С., Иванов А.В., Герасименко А.В., Сергиенко В.И. // Журн. неорган. химии. 2015. Т. 60. № 2. С. 243. https://doi.org/10.7868/S0044457X15020233
  34. Заева А.С., Иванов А.В., Герасименко А.В. // Коорд. химия. 2015. Т. 41. № 10. С. 590. https://doi.org/10.7868/S0132344X15090108
  35. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A. 2009. V. 113. № 28. P. 8132. https://doi.org/10.1021/jp904128b
  36. Scilabra P., Terraneo G., Resnati G. // Acc. Chem. Res. 2019. V. 52. № 5. P. 1313. https://doi.org/10.1021/acs.accounts.9b00037
  37. Лидин Р.А., Андреева Л.Л., Молочко В.А. Константы неорганических веществ: справочник. М.: Дрофа, 2008. С. 180.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences