Ignition of a gasless mixture array by a combustion wave

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The methods of mathematical modeling have been used to explore the initiation of combustion of a large mass of a condensed mixture in local contact with the end face of the burning layer. It is shown that the minimum width of the igniting layer is proportional to the width of the thermal front of the combustion wave. The coefficient of proportionality is determined by the initial temperature, heat and activation energy of the reaction. The calculation results can be used to estimate the effective activation energy of the reaction that controls the combustion mechanism of gasless system.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Aldushin

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: petr@ism.ac.ru
Ресей, Chenogolovka

P. Krishenik

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: petr@ism.ac.ru
Ресей, Chenogolovka

S. Rogachev

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: petr@ism.ac.ru
Ресей, Chenogolovka

Әдебиет тізімі

  1. Merzhanov A.G. // Combust. and Flame. 1966. V. 10. № 4. P. 341. https://doi.org/10.1016/0010-2180(66)90041-1
  2. Melguizo-Gavilanes J., Boettcher P.A. Mével R., Shepherd J.E. // Combust. and Flame. 2019. V. 204. P. 116. https://doi.org/10.1016/j.combustflame.2018.12.036
  3. Krishenik P.M., Kostin S.V., Rogachev S.A. // Combust. Explos., Shock Waves. 2021. V. 57(2). P. 182. https://doi.org/1134/S0010508221020064
  4. Krishenik P.M. Kostin S.V., Rogachev S.A. // Intern. J. Self-Propag. High-Temp. Syns. 2020. V. 29. № 4. P. 191. https://doi.org/10.3103/S1061386220040056
  5. Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2021. V. 15(1). P. 68. https://doi.org/10.1134/S1990793121010073
  6. Aldushin A.P., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 1995. V. 4. № 1. P. 5.
  7. Merzhanov A.G. // Combust. Sci. and Tech. 1994. V. 98. P. 307. https://doi.org/10.1016/0010-2180(66)90041-1
  8. Krishenik P.M., Kostin S.V., Rogachev A.S. // Russ. J. Phys. Chem. B. 2023. V. 17(5). P. 1123. https://doi.org/10.1134/S1990793123050044
  9. Aldushin A.P., Bayliss A., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 2002. V. 11. № 1. P. 131.
  10. Samarskii A.A. The Theory of Difference Shemes. NY: CRC Press, 2001. https://doi.org/10.1201/9780203908518
  11. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 394. https://doi.org/10.1134/S1990793123020100
  12. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 399. https://doi.org/10.1134/S1990793123020112

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Combustion diagram: rectangular area 2 is initiated by ignition area 1.

Жүктеу (73KB)
3. Fig. 2. Trajectory of combustion wave propagation at supercritical (d1A = 24.1) and subcritical (d1A = 24.0) width of the ignition layer at Ar = 6, T0r = 0.1, Ze = Ar(1 - T0r).

Жүктеу (83KB)
4. Fig. 3. Dependence of the critical width of the ignition layer by the combustion wave D1crU/ϰ on the Arrhenius number Ar (curves 1 and 2). The length of the ignition layer L1U/ϰ ~ 100, T0r = 0.1, Ze = Ar(1 – T0r). Curve 3 is the critical value of D1crU/ϰ for ignition by an inert layer with the adiabatic combustion temperature as the initial value.

Жүктеу (93KB)
5. Fig. 4. Temperature fields formed in the transient process. Physicochemical parameters of the layers: Ar = 8.0, T0r = 0.1, Ze = Ar(1 – T0r), width of the ignition layer D1CrU/ϰ = 13.64, a, b – temperature fields at L1U/ϰ = 20.8; c, d – L1U/ϰ = 19.3.

Жүктеу (118KB)

© Russian Academy of Sciences, 2024