MKT-077 suppresses the functional activity of isolated mouse skeletal muscle mitochondria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study demonstrates the effect of the rhodocyanine derivative MKT-077 on the function of isolated mitochondria from mouse skeletal muscle. MKT-077 was shown to dose-dependently inhibit mitochondrial respiration fueled by glutamate/malate (complex I substrates) or succinate (complex II substrate). This effect of MKT-077 was accompanied by a decrease in the membrane potential of organelles and was associated with both inhibition of the activity of complexes I and II of the mitochondrial respiratory chain and an increase in the proton permeability of the inner mitochondrial membrane. Molecular docking revealed sites in mitochondrial respiratory chain complex I that have an affinity for MKT-077 comparable to that of the specific inhibitor rotenone. At a concentration of 5 μM, MKT-077 caused a significant increase in hydrogen peroxide production by skeletal muscle mitochondria. However, 1 μM MKT-077 reduced the pro-oxidant effect of antimycin A. In addition, MKT-077 dose-dependently reduced the ability of mitochondria to uptake and retain calcium ions in the matrix. The article discusses the mechanisms of possible action of MKT-077 on the functioning of skeletal muscle mitochondria and their contribution to the side effects observed during the therapy of pathological conditions in vivo using this rhodocyanine derivative.

Full Text

Restricted Access

About the authors

A. D. Igoshkina

Mari State University

Email: dubinin1989@gmail.com
Russian Federation, pl. Lenina, 1, Yoshkar-Ola

N. V. Mikina

Mari State University

Email: dubinin1989@gmail.com
Russian Federation, pl. Lenina, 1, Yoshkar-Ola

A. V. Chulkov

Mari State University

Email: dubinin1989@gmail.com
Russian Federation, pl. Lenina, 1, Yoshkar-Ola

E. I. Khoroshavina

Mari State University

Email: dubinin1989@gmail.com
Russian Federation, pl. Lenina, 1, Yoshkar-Ola

M. V. Dubinin

Mari State University

Author for correspondence.
Email: dubinin1989@gmail.com
Russian Federation, pl. Lenina, 1, Yoshkar-Ola

References

  1. Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56 (3), 544–550.
  2. Koya K., Li Y., Wang H., Ukai T., Tatsuta N., Kawakami M., Shishido, Chen L.B. 1996. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res. 56, 538–543.
  3. Chiba Y., Kubota T., Watanabe M., Matsuzaki S.W., Otani Y., Teramoto T., Matsumoto Y., Koya K., Kitajima M. 1998. MKT-077, localized lipophilic cation: Antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res. 18 (2A), 1047–1052.
  4. Wen B., Xu K., Huang R., Jiang T., Wang J., Chen J., Chen J., He B. 2022. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep. 25 (5), 165. https://doi.org/10.3892/mmr.2022.12681
  5. Liang T., Hang W., Chen J., Wu Y., Wen B., Xu K., Ding B., Chen J. 2021. ApoE4 (Δ272-299) induces mitochondrial-associated membrane formation and mitochondrial impairment by enhancing GRP75-modulated mitochondrial calcium overload in neuron. Cell Biosci. 11 (1), 50. https://doi.org/10.1186/s13578-021-00563-y
  6. Rousaki A., Miyata Y., Jinwal U.K., Dickey C.A., Gestwicki J.E., Zuiderweg E.R. 2011. Allosteric drugs: The interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411 (3), 614–632. https://doi.org/10.1016/j.jmb.2011.06.003
  7. Xu H., Guan N., Ren Y.L., Wei Q.J., Tao Y.H., Yang G.S., Liu X.Y., Bu D.F., Zhang Y., Zhu S.N. 2018. IP3R-Grp75-VDAC1-MCU calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an Adriamycin nephropathy rat model. BMC Nephrol. 9 (1), 140. https://doi.org/10.1186/s12882-018-0940-3
  8. Li J., Qi F., Su H., Zhang C., Zhang Q., Zhang S. 2022. GRP75-faciliated mitochondria-associated ER membrane (MAM) integrity controls cisplatin-resistance in ovarian cancer patients. Int. J. Biol Sci. 18 (7), 2914–2931. https://doi.org/10.7150/ijbs.71571
  9. Esfahanian N., Knoblich C.D., Bowman G.A., Rezvani K. 2023. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 11, 1028519. https://doi.org/10.3389/fcell.2023.1028519
  10. Williamson C.L., Dabkowski E.R., Dillmann W.H., Hollander J.M. 2008. Mitochondria protection from hypoxia/reoxygenation injury with mitochondria heat shock protein 70 overexpression. Am. J. Physiol. Heart Circ. Physiol. 294 (1), H249–H256. https://doi.org/10.1152/ajpheart.00775.2007
  11. Dubinin M.V., Stepanova A.E., Mikheeva I.B., Igoshkina A.D., Cherepanova A.A., Talanov E.Y., Khoroshavina E.I., Belosludtsev K.N. 2024. Reduction of mitochondrial calcium overload via MKT-077-induced inhibition of glucose-regulated protein 75 alleviates skeletal muscle pathology in dystrophin-deficient mdx mice. Int. J. Mol. Sci. 25 (18), 9892. https://doi.org/10.3390/ijms25189892
  12. Weisberg E.L., Koya K., Modica-Napolitano J., Li Y., Chen L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56 (3), 551–555.
  13. Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G., Belosludtsev K.N. 2020. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta Mol. Basis Dis. 1866 (5), 165674. https://doi.org/10.1016/j.bbadis.2020.165674
  14. Belosludtsev K.N., Belosludtseva N.V., Kosareva E.A., Talanov E.Y., Gudkov S.V., Dubinin M.V. 2020. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie. 176, 150–157. https://doi.org/10.1016/j.biochi.2020.07.011
  15. Pollard A.K., Craig E.L., Chakrabarti L. 2016. Mitochondrial complex I activity measured by spectrophotometry is reduced across all brain regions in ageing and more specifically in neurodegeneration. PLoS One. 11 (6), e0157405. https://doi.org/10.1371/journal.pone.0157405
  16. Spinazzi M., Casarin A., Pertegato V., Salviati L., Angelini C. 2012. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 7 (6), 1235–1246. https://doi.org/10.1038/nprot.2012.058
  17. Dubinin M.V., Svinin A.O., Vedernikov A.A., Starinets V.S., Tenkov K.S., Belosludtsev K.N., Samartsev V.N. 2019. Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): Inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J. Bioenerg. Biomembr. 51 (3), 219–229. https://doi.org/10.1007/s10863-019-09796-6
  18. Gu J., Liu T., Guo R., Zhang L., Yang M. 2022. The coupling mechanism of mammalian mitochondrial complex I. Nat. Struct. Mol. Biol. 29 (2), 172–182. https://doi.org/10.1038/s41594-022-00722-w
  19. Eberhardt J., Santos-Martins D., Tillack A.F., Forli S. 2021. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61 (8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  20. Trott O., Olson A.J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334
  21. Neese F., Wennmohs F., Becker U., Riplinger C. 2020. The ORCA quantum chemistry program package. J. Chem. Phys. 152 (22), 224108. https://doi.org/10.1063/5.0004608
  22. Dubinin M. V., Mikheeva I. B., Stepanova A. E., Mikina N. V., Sushentsov D. V., Sharapov V. A., Cherepanova A. A., Loskutov V. V., Belosludtsev K. N. 2024. MKT-077 normalizes mitochondrial function and mitigates cardiac pathology in mdx mice. Biocell. 48 (12), 1815–1825. https://doi.org/10.32604/biocell.2024.058068
  23. Kharechkina E.S., Nikiforova A.B., Belosludtsev K.N., Rokitskaya T.I., Antonenko Y.N., Kruglov A.G. 2021. Pioglitazone is a mild carrier-dependent uncoupler of oxidative phosphorylation and a modulator of mitochondrial permeability transition. Pharmaceuticals (Basel). 14 (10), 1045. https://doi.org/10.3390/ph14101045
  24. Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94 (3), 909–950. https://doi.org/10.1152/physrev.00026.2013
  25. Chen Q., Vazquez E.J., Moghaddas S., Hoppel C.L., Lesnefsky E.J. 2003. Production of reactive oxygen species by mitochondria: Central role of complex III. J. Biol. Chem. 278 (38), 36027–36031. https://doi.org/10.1074/jbc.M304854200
  26. Белослудцев К.Н., Дубинин М.В., Белослудцева Н.В., Миронова Г.Д. 2019. Транспорт ионов Ca2+ митохондриями: механизмы, молекулярные структуры и значение для клетки. Биохимия. 6 (84), 759–775. https://doi.org/10.1134/S0320972519060022
  27. Park S.H., Baek K.H., Shin I., Shin I. 2018. Subcellular HSP70 inhibitors promote cancer cell death via different mechanisms. Cell Chem Biol. 25 (10), 1242–1254. https://doi.org/10.1016/j.chembiol.2018.06.010
  28. Ozaki T., Yamashita T., Ishiguro S. 2009. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria. Biochim. Biophys. Acta. 1793 (12), 1848–1859. https://doi.org/10.1016/j.bbamcr.2009.10.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chemical structure of MKT-077

Download (37KB)
3. Fig. 2. Respiration of isolated skeletal muscle mitochondria from mice energized with glutamate and malate (a and b) or succinate (c and d) in the absence (a and c) and presence (b and d) of 20 μM MKT-077. Medium composition: 120 mM KCl, 5 mM NaH2PO4, and 10 mM HEPES-KOH (pH 7.4). Substrates and reagents: 2.5 mM potassium malate and 2.5 mM potassium glutamate, 5 mM succinic acid, 1 μM rotenone, 200 μM ADP, 50 μM DNP. C.2 – state 2, C.3 – state 3, C.4 – state 4, C.3UDNF – state 3UDNF, M – mitochondria.

Download (307KB)
4. Fig. 3. Molecular docking of the interaction of MKT-077 and rotenone with complex I of the mitochondrial respiratory chain. a – Internal and external binding sites of decylubiquinone in complex I of the mitochondrial respiratory chain. b – Comparison of crystallographic data with the calculated position of rotenone for two binding sites (rotenone1 – crystallographic data, rotenone2 – docking result), the subunits forming the binding sites are indicated: 49 kDa (PDB chain 4), PSST (PDB chain 6), ND1 (PDB chain H). c – Comparison of the position in the internal binding site of MKT-077 and rotenone. d – Comparison of the position in the external binding site of MKT-077 and rotenone.

Download (667KB)
5. Fig. 4. Effect of MKT-077 on the membrane potential of mouse skeletal muscle mitochondria energized with glutamate and malate (a) or succinate (b). Substrates and reagents: 2.5 mM potassium malate, 2.5 mM potassium glutamate, 1 μM TPP+, 5 mM succinic acid, 1 μM rotenone, 50 μM DNP. Each figure shows the data of a typical experiment obtained on one mitochondrial preparation. In each case, similar results were obtained in two more independent experiments. The dotted lines show the results of experiments in the absence of MKT-077 additives.

Download (133KB)
6. Fig. 5. Rate of H2O2 formation by mouse skeletal muscle mitochondria energized by glutamate and malate (Glu/mal) or succinate (Succinate+rot): a – in the presence of different concentrations of MKT-077; b – under the action of 1 μM antimycin A (AntA) in the absence and presence of 1 μM MKT-077. Control – absence of AntA and MKT-077. Mean values ​​± standard error of the mean (n = 4) are shown. * – p < 0.05 versus control; # – p < 0.05 versus 1 μM AntA.

Download (151KB)
7. Fig. 6. Effect of MKT-077 on calcium transport in mouse skeletal muscle mitochondria. a – Uptake of Ca2+ supplements (10 μM pulses) by skeletal muscle mitochondria energized with glutamate and malate in the absence of supplements (1) and in the presence of 1 μM (2), 5 μM (3), and 10 μM (4) MKT-077. b – Uptake of Ca2+ supplements (10 μM pulses) by skeletal muscle mitochondria energized with succinate in the absence of supplements (1) and in the presence of 1 μM (2), 5 μM (3), and 10 μM (4) MKT-077. c – Calcium capacity of skeletal muscle mitochondria energized by glutamate and malate (Glu/mal) or succinate (Succinate+rot) in the absence (control) and presence of different concentrations of MKT-077. Substrates and reagents: 2.5 mM potassium malate, 2.5 mM potassium glutamate (a, c), 5 mM succinic acid, 1 μM rotenone (b, c). The concentration of mitochondrial protein in the cuvette is 0.25 mg/ml. Mean values ​​± standard error of the mean (n = 4) are shown. * – p < 0.05 versus control.

Download (243KB)

Copyright (c) 2025 The Russian Academy of Sciences