Development of acoustic sounding methods of inhomogeneous marine environment based on nonlinear acoustics principles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A brief review of the studies of the acoustic signal of a parametric antenna in the ocean at megameter distances is given. The features of the propagation of a broadband signal of a parametric antenna in a shallow-water marine waveguide are also discussed. In this case, the frequency dispersion of the sound velocity in the marine waveguide allows for the compression of a broadband single-mode signal. Such compression leads to an increase in the efficiency of marine environment sounding. The possibility of branching propagation of directional acoustic radiation in an inhomogeneous ocean is discussed. It is shown that nonlinear acoustics opens up new possibilities, not implemented by known methods, for the use of hydroacoustic antennas in long-range signal propagation in a heterogeneous marine environment.

全文:

受限制的访问

作者简介

I. Esipov

N.N. Andreev Acoustics Institute; Gubkin Russian State University of Oil and Gas (National Research University)

编辑信件的主要联系方式.
Email: igor.esipov@mail.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Зверев В.А., Калачев А.И., Степанов Н.С. К вопросу об использовании нелинейных эффектов в гидроакустике // Акуст. журн. 1967. Т. 13. № 3. С. 380–382.
  2. Новиков Б.К., Руденко О.В., Тимошенко В.И. Нелинейная гидроакустика. Л.: Судостроение, 1981.
  3. Наугольных К.А., Островский Л.А. Нелинейные волновые процессы в акустике. М.: Наука, 1990.
  4. Есипов И.Б., Попов О.Е., Воронин В.А., Тарасов С.П. Дисперсия сигнала параметрической антенны в мелком море // Акуст. журн. 2009. Т. 55. № 1. С. 56–61.
  5. Бреховских Л.M. Океан и человек: Настоящее и будущее. М.: Наука, 1987.
  6. Мюир Т.Дж., Голдсбери Т.Дж. Вопросы обработки сигналов в нелинейной акустике // Подводная акустика и обработка сигналов. Под ред. Бьерно Л. М.: Мир, 1985. 488 с. Muir T.G., Goldsberry T.G. Approaches to signal processing in nonlinear acoustics / in Underwater Acoustics and Signal Processing. Proc. of the NATO advanced study institute. Ed. by Leif Bjorno. Denmark, 1980.
  7. Зверев В.А. Как зарождалась идея параметрической акустической антенны // Акуст. журн. 1999. Т. 45. № 5. С. 685–692.
  8. Донской Д.М., Зайцев В.Ю., Наугольных К.А., Сутин А.М. Экспериментальные исследования поля мощного параметрического излучателя в мелком море // Акуст. журн. 1993. Т. 39. № 2. С. 266–274.
  9. Есипов И.Б., Калачев А.И., Соколов А.Д., Сутин А.М., Шаронов Г.А. Исследования дальнего распространения сигналов мощного параметрического излучателя // Акуст. журн. 1994. Т. 40. № 1. С. 71–75.
  10. Есипов И.Б., Зименков С.В., Калачев А.И., Назаров В.Е. Зондирование океанического вихря направленным параметрическим излучением // Акуст. журн. 1993. Т. 39. № 1. С. 173–176.
  11. Есипов И.Б., Попов О.Е., Воронин В.А., Тарасов С.П. Дисперсия сигнала параметрической антенны в мелком море // Акуст. журн. 2009. Т. 55. № 1. С. 56–61.
  12. Есипов И.Б., Попов О.Е., Солдатов Г.В. Компрессия сигнала параметрической антенны в мелководном волноводе // Акуст. журн. 2019. Т. 65. № 4. С. 490–498.
  13. Гурбатов С.Н., Зайцев В.Ю., Прончатов-Рубцов Н.В. О нелинейной генерации низкочастотного звука в рефракционном акустическом волноводе // Акуст. журн. 1989. Т. 35. № 4. С. 620–625.
  14. Зайцев В.Ю., Островский Л.А., Сутин А.М. Модовая структура поля параметрического излучателя в акустическом волноводе // Акуст. журн. 1987. Т. 33. № 1. С. 37–42.
  15. Colosi J.A., Baggeroer A.B., Birdsall T.G., Clark C., Cornuelle B.D., Costa D., Dushaw B.D., Dzieciuch M., Forbes A.M.G., Howe B.M., Menemenlis D., Mercer J.A., Metzger K., Munk W., Spindel R.C., Worcester P.F., and Wunsch C. A review of recent results on ocean acoustic wave propagation in random media: Basin scales. IEEE J. Ocean Eng. 1999.V. 24. P. 138–155.
  16. Patsyk A., Sivan U., Segev M. et al. Observation of branched flow of light // Nature. 2020. V. 583. P. 60–65. https://doi.org/10.1038/s41586-020-2376-8
  17. Wolfson M.A. and Tomsovic S. On the stability of long-range sound propagation through a structured ocean // J. Acoust. Soc. Am. 2001. V. 109(6). P. 2693–2703.
  18. Moffett M.B. and Mellen R.H. Model for parametric acoustic source // J. Acoust. Soc. Am. 1977. V. 61. No 2. P. 325–337.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of signal formation by a parametric antenna: 1 — high-frequency pump emitter, 2 — intensity-modulated high-frequency pump radiation, 3 — nonlinear acoustic interaction region, 4 — low-frequency parametric radiation signal.

下载 (27KB)
3. Fig. 2. Directional pattern of a parametric antenna in the ocean. ■ — frequency 230 Hz, distance 200 km; ○ — frequency 400 Hz, distance 200 km, ■ — frequency 230 Hz, distance 1000 km.

下载 (89KB)
4. Fig. 3. Ocean surface temperature map in the experimental area. 1 and 2 are the positions of the R/V ABK and R/V ANA, respectively. The R/V ABK passes stations sequentially from No. 1 to No. 5.

下载 (164KB)
5. Fig. 4. Angular characteristics of acoustic signals that passed through the vortex along the paths, according to the stations of the NIS ABK in Fig. 3.

下载 (107KB)
6. Fig. 5. Vertical distribution of the relative amplitude of pulses (red) for a frequency of 15 kHz and the 1st mode of the waveguide eigenfunction (blue) for the experimental sound profile and the sound speed in the bottom (longitudinal) of 1600 m/s, soil density of 1700 kg/m3.

下载 (85KB)
7. Fig. 6. Signals on a vertical chain of receivers, distance 1000 m. Frequency 15 kHz (filter band 500 Hz), pulse duration 2 ms.

下载 (95KB)
8. Fig. 7. Dependence of signal intensity on distance. 1 — Isotropic medium I(r) = I0(R/r)2; 2 — waveguide propagation I(r) = I0(R/r); 3 — frequency dispersion I(r) = I0(R/r)T0/(T+τ).

下载 (76KB)
9. Fig. 8. A typical type of branching propagation in an inhomogeneous medium [16]: (a) — illustrates the limitation of diffraction in signal propagation channels, (b) — experimental observation of the diffraction broadening of a Gaussian beam of the same size as in the experiment (a), but in a homogeneous medium, (c) — comparison of the beam width in the channel marked by the arrow in (a) with the diffraction width of the beam in a homogeneous medium in (b).

下载 (213KB)
10. Fig. 9. Model of sound propagation in an inhomogeneous ocean [17]. 1 — Stable beam emanating from a source located at the minimum of the speed of sound. 2 — Unstable, branching beam. l — spatial scale of inhomogeneity.

下载 (89KB)

版权所有 © The Russian Academy of Sciences, 2025