Estimation of the coefficient of sound reflection from the bottom based on the analysis of the spatio-angular field structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for estimating the coefficient of sound reflection from the bottom of a waveguide based on field measurements using a vertical array at various distances from the source is discussed. To analyze the spatial-angular structure of the recorded field, the method of coherent states, borrowed from quantum theory, is used. The acoustic analogue of the coherent state expansion allows one to construct a filter to isolate the field component representing the contribution of a given narrow beam of rays. The ratio of the amplitudes of such a field component before and after reflection from the ground gives an estimate of the reflection coefficient of the central ray. The effectiveness of the approach was tested using numerical simulation data. The results of its application for processing data from a lake experiment are presented.

全文:

受限制的访问

作者简介

A. Virovlyansky

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: viro@ipfran.ru
俄罗斯联邦, Ulyanova 46, Nizhny Novgorod, 603950

A. Kazarova

A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: viro@ipfran.ru
俄罗斯联邦, Ulyanova 46, Nizhny Novgorod, 603950

参考

  1. Wang Z., Ma Y., Kan G., Liu B., Zhou X., Zhang X. An inversion method for geoacoustic parameters in shallow water based on bottom reflection signal // Remote Sens. 2023. V. 15(13). P. 3237.
  2. Chapman N.R. Perspectives on geoacoustic inversion of ocean bottom reflectivity data // J. Mar. Sci. Eng. 2016. V. 4(3). P. 61.
  3. Dong H., Chapman N.R. Measurement of ocean bottom reflection loss with a horizontal line array // Acta Acust. 2016. V. 102. N. 4. P. 645–651.
  4. Schmidt H., Jensen F.B. Evaluation of experimental techniques for determining the plane wave reflection coefficient at the seafloor // In Ocean Seismo-Acoustics. Eds. Akal T., Berkson J.M. N. Y.: Plenum, 1986. P. 721–730.
  5. Носов А.В., Постнов Г.А. Измерение акустических параметров дна океана с помощью многократно рассеянных звуковых импульсов // Акуст. журн. 2001. Т. 47. № 4. С. 520–524.
  6. Klauder J.R., Sudarshan E.C.G. Fundamentals of quantum optics. N.Y.: W.A. Benjamin, 1968. 304 p. Сударшан Э., Клаудер Дж. Основы квантовой оптики. М.: Мир, 1970. 430 с.
  7. Шляйх В.П. Квантовая оптика в фазовом пространстве. М.: Физматлит, 2005. 760 с.
  8. Вировлянский А.Л., Казарова А.Ю. Распределение интенсивности звукового поля в глубоком море в фазовом пространстве “глубина–угол–время”// Акуст. журн. 2023. Т. 69. № 5. С. 515–527.
  9. Virovlyansky A.L., Kazarova A.Yu., Lyubavin L.Ya. Matched field processing in phase space // J. Ocean Eng. 2020. V. 45. N. 4. P. 1583–1593.
  10. Вировлянский А.Л. Выделение компоненты поля, формируемой заданным пучком лучей на апертуре приемной антенны в неоднородной среде // Успехи физ. наук. 2023. Т. 193. № 9. С. 1010–1020.
  11. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1973. 752 с.
  12. Макаров Д.В. Об измерении углов прихода акустических импульсов с помощью вертикальной антенны // Акуст. журн. 2017. Т. 63. № 6. С. 637–645.
  13. Makarov D.V., Kon’kov L.E. Angular spectrum of acoustic pulses at long ranges // J. Mar. Sci. Eng. 2023. V. 11(1). P. 29.
  14. Porter M.B. The KRAKEN Normal Mode Program; Technical Report (La Spezia: SACLANT Undersea Research Centre), 1991.
  15. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. М.: Наука, 2007. 370 с.
  16. Jensen F.B., Kuperman W.A., Porter M.B., Schmidt H. Computational Ocean Acoustics. New York: Springer, 2011.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Experimental scheme

下载 (72KB)
3. Fig. 2. (a) — Sound velocity profile at the measurement location. (b) — Examples of ray trajectories with exit angles from the source in the range of ±15.

下载 (108KB)
4. Fig. 3. Distribution of the intensity of signals received by the antenna in the time-depth z plane at distances of 30 m (top) and 120 m (bottom). The areas of increased intensity A and B on the upper graph are formed by rays arriving at a distance of 30 m without reflection from the boundaries and reflected once from the surface, respectively.

下载 (155KB)
5. Fig. 4. Trajectories of proper rays entering the point (r1, z1) (rays a and b) and the point (r2, z2) (rays a, c, d, e and f). The bold line highlights the trajectory of ray a, which leaves the source at a grazing angle of 7.

下载 (68KB)
6. Fig. 5. Distributions of intensity I in the time–angle χ plane (a, c, d) — at distances of 30 m and depth z1 = 15.6 m, and also (b, d, e) — at a distance of 120 m and depth z2 = 13.9 m. The intensity was obtained on the basis of numerical calculations (a, b) — in Model 1, (c, d) — in Model 2 and (d, e) — on the basis of processing of measurement data. Symbols of the corresponding eigenrays are indicated near the distribution maxima. On each graph, the white circle indicates the point of arrival of ray a in the plane (t, χ) at the corresponding distance.

下载 (271KB)
7. Fig. 6. Distributions of intensity J in the angle-depth plane z at distances (a, c, d) — 30 and (b, d, e) — 120 m. The intensity was obtained on the basis of numerical calculations (a, b) — in Model 1, (c, d) — in Model 2 and (d, e) — on the basis of processing of measurement data. White circles in graphs (a, c, d) are located at point (χ1, z1), and in graphs (b, d, e) at point (χ2, z2). Black dotted lines are formed by points depicting the arrivals of rays that have once reflected from the bottom.

下载 (341KB)
8. Fig. 7. Result of reconstruction of the ray reflection coefficient V as a function of its grazing angle near the bottom. Squares and triangles: reconstruction from measurement data using intensity distributions I and J, respectively. Black dots: reconstruction in Model 2. Solid curve: estimate using the analytical formula for the reflection coefficient at the boundary of two liquid half-spaces [14].

下载 (107KB)

版权所有 © The Russian Academy of Sciences, 2025