Modulational instability of electromagnetic waves on Mars associated with dust acoustic mode

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

It is assumed that the low-frequency noise recorded on the surface of Mars may be associated with a charged dust component in its atmosphere and the occurrence of sound perturbations in such a dust system that modulate the electromagnetic wave from the Sun. It is also shown that it can be associated with plasmadust processes in meteoroid tails. The mechanism for the excitation of modulational instability of an electromagnetic wave associated with a dust acoustic mode in the Martian atmosphere, namely in dust clouds at an altitude of 60 and 100 km, where the dusty plasma with particles of frozen carbon dioxide is detected, is described. It is shown that the development of modulational instability is due to the influence of high-frequency electromagnetic waves on the dusty plasma in the Martian atmosphere from both natural sources (solar radiation, lightning discharges) and anthropogenic nature (from equipment from space satellites and from stations on the surface of the planet). The parameters of electromagnetic pump waves, at which the active development of modulational instability of electromagnetic waves associated with the dust acoustic mode is expected, and the modulational instability growth rates are found. The development of the modulational instability in the dusty plasma of Martian clouds, in turn, can explain the occurrence of low-frequency noise recorded by equipment on the surface of Mars. The relation between observed radio noise in the range of 3 Hz – 3 kHz and plasma-dust processes in the Martian atmosphere, in particular, in dust clouds at 60 and 100 km, as well as in dusty plasma meteroid tails, where the dust concentration is high, is discussed.

Авторлар туралы

T. Morozova

Space Research Institute, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: timoroz@yandex.ru
Ресей, Moscow, 117997

S. Popel

Space Research Institute, Russian Academy of Sciences

Email: timoroz@yandex.ru
Ресей, Moscow, 117997

Әдебиет тізімі

  1. Попель С. И. Лекции по физике пылевой плазмы. М.: МФТИ, 2012. 160 с.
  2. Gueymard C. // Solar Energy. 2004. V. 76. P. 423.
  3. Альвен Х., Аррениус Г. Эволюция солнечной системы. М.: Мир, 1979. 511 С.
  4. Goertz C.K. // Rev. Geophys. 1989. V. 27. P. 271.
  5. Drain B.T. Physics of the Interstellar and Intergalactic Medium. Princeton Univ. press, 2011. 540 P.
  6. Морозова Т.И., Гарасев М.А., Кузнецов И.А. // Изв. вузов. Радиофизика. 2022. Т. 65. С. 1.
  7. Морозова Т.И., Кузнецов И.А. // Вестн. Московского университета. Сер. 3. Физика. Астрономия. 2023. Т. 78. С. 2330802.
  8. Haider, S.A., Pandya, B.M. // Geosci. Lett. 2015. V. 2. P. 8. doi: 10.1186/s40562-015-0023-2.
  9. Бронштэн В.А. Метеоры. Метеориты. Метеороиды. М.: Наука. 1987.
  10. Морозова Т.И., Попель С.И. // Физика плазмы. 2020. Т. 46. С. 993.
  11. Морозова Т.И., Копнин С.И., Попель С.И. // Геомагнетизм и аэрономия. 2021. T.61. С. 794.
  12. Trautner R., Koschny D., Witasse O., Zender J., Knöfel A. // Proceed. Asteroids, Comets, Meteors. ACM 2002. International Conference, 2002.
  13. Morozova T.I. Popel S.I. // J. Phys.: Confer. Ser. 2021. V. 1787. P. 012052.
  14. Kozakiewicz, J., Kulak, A., Kubisz, J., Zietara K. // Earth Moon Planets. 2016. V. 118. P. 103. doi: 10.1007/s11038-016-9493-2.
  15. Vladimirov S.V., Tsytovich V.N., Popel S.I., Khakimov F.Kh. // Modulational Interactions in Plasmas. Dordrecht: Kluwer Acad. Publ., 1995.
  16. Копнин С.И., Попель С.И., Минг Ю. // Физика плазмы. 2007. Т. 33. С. 323.
  17. Борисов Н.Д., Копнин С.И., Попель С.И., Морозова Т.И. // Физика плазмы. 2019. Т. 45. C.346.
  18. Morozova T.I., Kopnin S.I., Popel S.I., Borisov N.D. // Phys. Plasmas. 2021. V. 28. P. 033703.
  19. Морозова Т.И., Копнин С.И., Попель С.И. // Физика плазмы. 2015. Т. 41. С. 867.
  20. Морозова Т.И., Попель С.И. // Физика плазмы. 2023. Т. 49. C. 42. doi: 10.31857/S0367292122601199.
  21. Извекова Ю. Н., Попель С.И. // Физика плазмы. 2017. Т. 43. С. 1010.
  22. Xu Sh., Thiemann Ed, Mitchell D., Eparvier F., Pawlowski D., Benna M., Andersson L., Liemohn M.W., Bougher S., Mazelle Ch. // Geophys. Res. Lett. 2018. V. 45. P. 7382.
  23. Fox J.L., Dalgarno A. // J. Geophys. Res. 1979. V. 84. P. 7315. doi: 10.1029/ja084ia12p07315.
  24. Bertaux J.-L., Korablev O., Perrier S., Quemerais E., Montmessin F., Leblanc F., Lebonnois S., Rannou P., Lefèvre F., Forget F., Fedorova A., Dimarellis E., Reberac A., Fonteyn D., Chaufray J.Y., Guibert S. // J. Geophys. Res. 2006. V. 111. P. E10S90.
  25. Bertaux J.-L., Fonteyn D., Korablev O., Chassefre E., Dimarellis E., Dubois, J.P., Hauchecorne A., Lefèvre F., Cabane M., Rannou P., Levasseur-Regourd A.C., Cernogora G., Quemerais E., Hermans C., Kockarts G., Lippens, C., de Maziere M., Moreau D., Muller C., Neefs E., Simon P.C., Forget F., Hourdin F., Talagrand O., Moroz V.I., Rodin A., Sandel B., Stern A. // Mars Express: the scientific payload / Ed. A. Wilson. Eur. Space Agency Spec. Publ., 2004. ESA-SP 1240. P. 95.
  26. Campbell M.J., Liesegang J., Riley J.D., Jenkin J.G. // J. Phys. C: Solid State Phys. 1982. V. 15. P. 2549.
  27. Резниченко Ю.С., Дубинский А.Ю., Попель С.И. // Письма ЖЭТФ. 2023. Т. 117. С. 420.
  28. Морозова Т.И., Попель С.И. // Физика плазмы. 2022. T. 48. С. 635. doi: 10.31857/S0367292122600406.
  29. Морозова Т.И., Попель С.И. // Физика плазмы. 2022. T. 48. C. 924. doi: 10.31857/S0367292122600777.
  30. Мишин Е.В., Ружин Ю.Я., Телегин В.А. Взаимодействие электронных потоков с ионосферной плазмой. М.: Гидрометеоиздат, 1989. 264 с.
  31. Popel S.I., Tsytovich V.N., Vladimirov S.V. // Phys. Plasmas. 1994. V. 1. P. 2176–2188.
  32. Попель С.И. // Физика плазмы. 1998. Т. 24. С. 1093.
  33. Popel S.I., Elsasser K. // Comments Plasma Phys. Cont. Fusion. 1994. V. 16. P. 79.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024