FEATURES OF RADIAL DISTRIBUTIONS OF POLOIDAL MAGNETIC FIELD IN AXIAL JET EJECTION IN A PLASMA FOCUS

Cover Page

Cite item

Full Text

Abstract

The radial distribution of the Bz field at a distance of 35 cm from the generation region of the axial jet emission (the anode surface of the setup) has been studied using the PF-3 plasma-focus facility. The measurements have been performed using multichannel magnetic probes located in the flight chamber of the facility. This has made it possible to measure the magnetic field distribution at 18 points on both sides of the flight chamber axis. The magnetic probes have been calibrated both in absolute value and in the magnetic field direction. An external multi-turn solenoid has been used to create the initial longitudinal (poloidal) magnetic field. The solenoid power supply circuit has allowed obtaining different Bz field directions: along or against the facility axis. It is shown that the poloidal field distribution reaches its maximum in the bunch center and decreases at the periphery, regardless of the presence of an external magnetic field. The Bz field has a radial distribution Bz(r), close in shape to the magnetic field distribution of the solenoid. The work is performed within the program for the simulation of jets of young stellar objects.

About the authors

V. I. Krauz

National Research Center “Kurchatov Institute”

Email: krauz_vi@nrcki.ru
Moscow, 123098 Russia

K. N. Mitrofanov

National Research Center “Kurchatov Institute”; Troitsk Institute for Innovation and Fusion Research, Troitsk

Email: mitrofan@triniti.ru
Moscow, 123098 Russia; Moscow, 142190 Russia

V. V. Myaltona

National Research Center “Kurchatov Institute”

Moscow, 123098 Russia

A. M. Kharrasov

National Research Center “Kurchatov Institute”

Moscow, 123098 Russia

Yu. V. Vinogradova

National Research Center “Kurchatov Institute”

Moscow, 123098 Russia

References

  1. Pudritz R. E., Ray T. P. // Front. Astron. Space Sci. 6. 2019. P. 54
  2. Бескин В. С., Осесимметричные стационарные течения в астрофизике М.:Физматлит, 2005
  3. Ryutov D., Drake R.P., Kane J., Liang E., Remington B.A., Wood-Vasey W.M. // The Astrophysical J. 1999.
  4. Remington B.A., Drake R.P., Ryutov D.D. // Reviews of Modern Physics. 2006. V. 78. P. 755.
  5. Albertazzi B., Ciardi A., Nakatsutsumi M., Vinci T., Beard J., Bonito R., Billette J., Borghesi M., Burkley Z., Chen S. N., Cowan T. E., Herrmannsdorfer T., Higginson D. P., Kroll F., Pikuz S. A., Naughton K., Romagnani L., Riconda C., Revet G., Riquier R., Schlenvoigt H.-P., Skobelev I. Yu., Faenov A.Ya., Soloviev A., Huarte-Espinosa M., Frank A., Portugall O., Pepin H., Fuchs J. // Science. 2014. 17 October. P. 325.
  6. Lebedev S.V., Frank A., Ryutov D.D. // Rev. Mod. Phys. 2019. V. 91. P. 025002.
  7. Hsu S C, Bellan PM // Mon. Not. R. Astron. Soc. 334 257 (2002)
  8. Бескин В.С., Крауз В.И., Ламзин С.А. // УФН. 2023. 193, 345–381
  9. Бескин В.С., Калашников И.Ю. // Письма в астрономический журнал. 2020. Т. 46. № 7. С. 494.
  10. Suzuki-Vidal F., Lebedev S.V., Bland S.N., Hall G.N., Harvey-Thompson A.J., Chittenden J.P., Marocchino A., Bott S.C., Palmer J., and Ciardi A. // IEEE Trans. Plasma Sci. 2010. V. 38. P. 581.
  11. Byvank T., Banasek J.T., Potter W.M., Greenly J.B., Seyler C.E., and Kusse B.R. // Phys. Plasmas. 2017. V. 24, 122701
  12. Krauz V.I., Mitrofanov K.N., Scholz M., Paduch M., Kubes P., Karpinski L.and Zielinska E. // EPL. 2012. V. 98. 45001
  13. Войтенко Д.А., Ананьев С.С., Астапенко Г.И., Басилая А.Д. , Марколия М, Митрофанов К.Н., Мялтон В.В., Тимошенко А.П., Харрасов А.М., Крауз В.И. // Физика плазмы. 2017. Т. 43. С. 967
  14. Auluck S. K. H., Krauz V. I., Myalton V. V., and Kharrasov A. M. // Plasma Physics Reports. 2024. V. 50. P. 358
  15. Крауз В.И., Виноградов В.П., Харрасов А.М., Мялтон В.В., Митрофанов К.Н., Бескин В.С., Виноградова Ю.В., Ильичев И.В. // Астрономический журнал. 2023. Т. 100. С. 19
  16. Filippov N.V., Filippova T.I., Khutoretskaia I.V., Mialton V.V., Vinogradov V.P. // Phys. Lett. A. 1966. V. 211. N. 3. P. 168.
  17. Митрофанов К.Н., Крауз В.И., Мялтон В. В., Велихов Е. П., Виноградов В. П., Виноградова Ю. В. // ЖЭТФ. 2014. Т.146. С.1035
  18. Глазырин И.В., Грабовский Е.В., Зукакишвили Г.Г., Карпеев А.В., Митрофанов К.Н., Олейник Г.М., Самохин А.А. // ВАНТ. Сер. Термоядерный синтез. 2009. Вып. 2. С. 67.
  19. Митрофанов К.Н., Крауз В.И., Грабовский Е.В., Мялтон В.В., Падух М., Грицук А.Н. // ПТЭ. 2018. Т. 61. № 2. С. 78.
  20. Виноградов В.П., Крауз В.И., Мокеев А.Н., Мялтон В.В., Харрасов А.М. // Физика плазмы. 2016. Т. 42. С.1033.
  21. Крауз В.И., Митрофанов К.Н., Войтенко Д.А., Астапенко Г.И., Марколия А.И., Тимошенко А.П. // Астрономический журнал. 2019. Т. 96. С. 156.
  22. Ананьев С.С., Крауз В.И., Мялтон В.В., Харрасов А.М. // ВАНТ. Сер. Термоядерный синтез. 2017. Т. 40, Вып. 1. С. 21–35
  23. Romanova M.M., Ustyugova G.V., Koldoba A.V., Lovelace R.V.E. // Mon. Not. Royal Astron. Soc. 2011, V. 416, P. 416
  24. Bromberg O., Tchekhovskoy A. // Mon. Not. Royal Astron. Soc. 2016, V. 456, P. 1739

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences