Interaction of a powerful hydrogen plasma flow with a supersonic gas jet and a tungsten target

封面

如何引用文章

全文:

详细

The results of a study of the interaction of a powerful flow of hydrogen plasma with a supersonic gas jet in front of a tungsten target are presented. Nitrogen or neon injected in front of the target surface provides a reliable method of shielding tungsten from direct exposure to hydrogen plasma. It has been experimentally shown that the resulting plasma of the gas jet is a powerful source of short-wave line radiation. Energy density absorbed by a tungsten target ≈25 J/cm2 is half the energy absorbed by tungsten during pulsed action of a hydrogen plasma flow without a gas jet ≈50 J/cm2. The maximum temperature achieved by the tungsten surface is ≈3700 K with the use of a gas jet and ≈5800 K without a gas jet. The presence of a gas jetscreen in front of the tungsten leads to the localization of evaporated tungsten near the target at distances of up to 1 cm from the surface.

作者简介

S. Lidzhigoriaev

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701

D. Burmistrov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Power Engineering Institute

Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 111250

V. Gavrilov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research

Email: vvgavril@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840

V. Kostyushin

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research

Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840

I. Poznyak

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701

A. Pushina

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701

D. Toporkov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: toporkov@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701

参考

  1. Toporkov D.A., Burmistrov D.A., Gavrilov V.V., Zhitlukhin A.M., Kostyushin V.A., Lidzhigoryaev S.D., Pushina A.V., Pikuz S. A., Ryazantsev S.N., Skobelev I.Yu. // Plasma Phys. Rep. 2023. V. 49. P. 1000.
  2. Skovorodin D.I., Pshenov A.A., Arakcheev A.S., Eksaeva E.A., Marenkov E.D., Krasheninnikov S.I. // Phys. Plasmas. 2016. V. 23. P. 022501.
  3. Kostyushin V.A., Poznyak I.M., Toporkov D.A., Burmistrov D.A., Zhuravlev K.V., Lidzhigoryaev S. D., Usmanov R.R., Tsybenko V. Yu., Nemchinov V.S. // Instruments Experimental Techniques. 2023. V. 66. P. 920.
  4. Житлухин А.М., Илюшин И.В., Сафронов В.М., Скворцов Ю.В. // Физика плазмы. 1982. Т. 8. С. 509.
  5. Лиджигоряев С.Д., Бурмистров Д.А., Гаврилов В.В., Костюшин В.А., Позняк И.М., Пушина А.В., Топорков Д.А. // ВАНТ. Сер. Термоядерный синтез. 2023. Т. 46. С. 63.
  6. Архипов Н.И., Васенин С.Г., Житлухин А.М., Половцев Н.А., Сафронов В.М., Топорков Д.А. // Приборы и техника эксперимента. 1998. № 1. С. 128.
  7. Волков Г.С., Лахтюшко Н.И., Терентьев О.В. // Приборы и техника эксперимента. 2010. № 5. С. 115.
  8. Prism Computational Sciences. Software tools for scientific research and commercial applications in the physical sciences and engineering. http://www.prism-cs.com
  9. Mutzke A., Bandelow G., Schneider R. // J. Nuclear Materials. 2015. V. 467. P. 413.
  10. Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Phys. Rep. 2024. V. 50. P. 23.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024