Interaction of a powerful hydrogen plasma flow with a supersonic gas jet and a tungsten target
- 作者: Lidzhigoriaev S.D.1,2, Burmistrov D.A.1,3, Gavrilov V.V.1, Kostyushin V.A.1, Poznyak I.M.1,2, Pushina A.V.1,2, Toporkov D.A.1,2
-
隶属关系:
- State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research
- National Research University Moscow Institute of Physics and Technology
- National Research University Moscow Power Engineering Institute
- 期: 卷 50, 编号 12 (2024)
- 页面: 1527-1537
- 栏目: PLASMA DIAGNOSTICS
- URL: https://bulletin.ssaa.ru/0367-2921/article/view/683754
- DOI: https://doi.org/10.31857/S0367292124120106
- EDN: https://elibrary.ru/EEKQWK
- ID: 683754
如何引用文章
全文:
详细
The results of a study of the interaction of a powerful flow of hydrogen plasma with a supersonic gas jet in front of a tungsten target are presented. Nitrogen or neon injected in front of the target surface provides a reliable method of shielding tungsten from direct exposure to hydrogen plasma. It has been experimentally shown that the resulting plasma of the gas jet is a powerful source of short-wave line radiation. Energy density absorbed by a tungsten target ≈25 J/cm2 is half the energy absorbed by tungsten during pulsed action of a hydrogen plasma flow without a gas jet ≈50 J/cm2. The maximum temperature achieved by the tungsten surface is ≈3700 K with the use of a gas jet and ≈5800 K without a gas jet. The presence of a gas jetscreen in front of the tungsten leads to the localization of evaporated tungsten near the target at distances of up to 1 cm from the surface.
作者简介
S. Lidzhigoriaev
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701
D. Burmistrov
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Power Engineering Institute
Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 111250
V. Gavrilov
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research
Email: vvgavril@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840
V. Kostyushin
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research
Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840
I. Poznyak
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology
Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701
A. Pushina
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology
Email: sandji@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701
D. Toporkov
State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology
Email: toporkov@triniti.ru
俄罗斯联邦, Troitsk, Moscow, 108840; Moscow, 141701
参考
- Toporkov D.A., Burmistrov D.A., Gavrilov V.V., Zhitlukhin A.M., Kostyushin V.A., Lidzhigoryaev S.D., Pushina A.V., Pikuz S. A., Ryazantsev S.N., Skobelev I.Yu. // Plasma Phys. Rep. 2023. V. 49. P. 1000.
- Skovorodin D.I., Pshenov A.A., Arakcheev A.S., Eksaeva E.A., Marenkov E.D., Krasheninnikov S.I. // Phys. Plasmas. 2016. V. 23. P. 022501.
- Kostyushin V.A., Poznyak I.M., Toporkov D.A., Burmistrov D.A., Zhuravlev K.V., Lidzhigoryaev S. D., Usmanov R.R., Tsybenko V. Yu., Nemchinov V.S. // Instruments Experimental Techniques. 2023. V. 66. P. 920.
- Житлухин А.М., Илюшин И.В., Сафронов В.М., Скворцов Ю.В. // Физика плазмы. 1982. Т. 8. С. 509.
- Лиджигоряев С.Д., Бурмистров Д.А., Гаврилов В.В., Костюшин В.А., Позняк И.М., Пушина А.В., Топорков Д.А. // ВАНТ. Сер. Термоядерный синтез. 2023. Т. 46. С. 63.
- Архипов Н.И., Васенин С.Г., Житлухин А.М., Половцев Н.А., Сафронов В.М., Топорков Д.А. // Приборы и техника эксперимента. 1998. № 1. С. 128.
- Волков Г.С., Лахтюшко Н.И., Терентьев О.В. // Приборы и техника эксперимента. 2010. № 5. С. 115.
- Prism Computational Sciences. Software tools for scientific research and commercial applications in the physical sciences and engineering. http://www.prism-cs.com
- Mutzke A., Bandelow G., Schneider R. // J. Nuclear Materials. 2015. V. 467. P. 413.
- Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Phys. Rep. 2024. V. 50. P. 23.
补充文件
