On the possibility of propagating a solitary electromagnetic wave in arbitrary directions in the plane of a two-dimensional graphene-based superlattice
- Autores: Glazov S.Y.1, Mescheryakova N.E1, Fedulov I.N2
-
Afiliações:
- Volgograd State Socio-Pedagogical University
- Yugra State University
- Edição: Volume 89, Nº 4 (2025)
- Páginas: 637-641
- Seção: Wave Phenomena: Physics and Applications
- URL: https://bulletin.ssaa.ru/0367-6765/article/view/690822
- DOI: https://doi.org/10.31857/S0367676525040228
- EDN: https://elibrary.ru/GUNSUZ
- ID: 690822
Citar
Texto integral
Resumo
The possibility of propagation of a plane solitary electromagnetic wave in the plane of a square two-dimensional graphene-based superlattice at various angles to its axes is investigated. A nonlinear equation describing the vector potential of a solitary electromagnetic wave is obtained for the case of weak nonadditivity of the energy spectrum of charge carriers in the collisionless approximation. It is shown that the propagation of plane solitary waves is possible either along the axes of the superlattice or at an angle of 45° to them.
Sobre autores
S. Glazov
Volgograd State Socio-Pedagogical University
Email: ser-glazov@yandex.ru
Volgograd, Russia
N. Mescheryakova
Volgograd State Socio-Pedagogical UniversityVolgograd, Russia
I. Fedulov
Yugra State UniversityKhanty-Mansiysk, Russia
Bibliografia
- Паннуков П.В. // Письма в ЖЭТФ. 2009. Т. 90. № 6. С. 515; Rainikov P.V. // JETP Lett. 2009. V. 90 № 6. Р. 469.
- Rainikov P.V. // Phys. Rev. B. 2020. V. 101. Art. No. 125301.
- Smirnova D.A., Shadrivov I.V., Smirnov A.I. et al. // Laser Photon. Rev. 2014. V. 8. Р. 291.
- Bludov Yu.V., Smirnova D.A., Kivshar Yu.S. et al. // Phys. Rev. B. 2015. V. 91. Art. No. 045424.
- Kvyatkovskiy S.V., Kukhar E.I. // Physica B. 2013. V. 408. P. 188.
- Martin-Vergara F., UNK F., Villatoro F.R. // Nonlin. Syst. 2018. V. 2. P. 85.
- Кухар Е.И., Квятковский С.В., Ионкина Е.С. // ФТП. 2018. Т. 52. № 6. С. 620; Kukhar E.I., Kvyatkovskiy S.V., Ionkina E.S. // Semiconductor. 2018. V. 52. No. 6. P. 766.
- Завьялов Д.В., Конченков В.И., Квятковский С.В. // ЖТФ. 2019. Т. 89. № 10. С. 1473; Zav’yalov D.V., Konchenkov V.I., Kvyatkovskiy S.V. // Tech. Phys. 2019. V. 64. P. 1391.
- Kvyatkovskiy S.V., Popov C.A. // J. Nano- Electron. Phys. 2017. V. 9. No. 2. Art. No. 02013.
- Forsythe C., Zhou X., Watanabe K. et al. // Nature Nanotechnol. 2018. V. 13. P. 566.
- Zhang Y., Kim Y., Gilbert M.J. et al. // NPJ 2D Mater. Appl. 2018. V. 2. P. 31.
- Бабикова П.В., Глазов С.Ю., Сыродов Г.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 1. С. 38; Badikova P.V., Glazov S.Yu., Syrodoev G.A. // Bull. UNKs. Acad. Sci. Phys. 2020. V. 84. No. 1. P. 30.
- Бабикова П.В., Глазов С.Ю., Сыродов Г.А. // ФТП. 2019. Т. 53. № 7. С. 927; Badikova P.V., Glazov S.Yu., Syrodoev G.A. // Semiconductors. 2019. V. 53. No. 7. P. 911.
- Глазов С.Ю., Сыродов Г.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 1. С. 128; Glazov S.Yu., Syrodoev G.A. // Bull. UNKs. Acad. Sci. Phys. 2020. V. 84. No. 1. P. 98.
- Glazov S.Yu., Syrodoev G.A. // J. Phys. Conf. Ser. 2021. V. 1740. No. 1. Art. No. 012062.
- Бабина О.Ю., Глазов С.Ю., Федулов И.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 30; Babina O.Yu., Glazov S.Yu., Fedulov I.N. // Bull. UNKs. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 22.
- Квятковский С.В., Капля Е.В. // ЖТФ. 2003. Т. 48. № 5. С. 53; Kvyatkovskiy S.V., Kaplya E.V. // Tech. Phys. 2003. V. 48. No. 5. P. 576.
- Sun Z., Hasan T., Ferrari A.C. // Physica E. 2012. V. 44. P. 1082.
- Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979. 384 с.
Arquivos suplementares
