Равновесные и разрядные характеристики единичной ячейки водородно-ванадиевой батареи с электролитом различной кислотности
- Авторы: Истакова О.И.1,2, Конев Д.В.1,2, Толстель Д.О.3, Воротынцев М.А.2
-
Учреждения:
- Федеральный исследовательский центр проблем химической физики и медицинской химии РАН
- Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
- Московский государственный университет имени М. В. Ломоносова
- Выпуск: Том 61, № 5 (2025)
- Страницы: 237-250
- Раздел: Статьи
- URL: https://bulletin.ssaa.ru/0424-8570/article/view/690984
- DOI: https://doi.org/10.31857/S0424857025050014
- EDN: https://elibrary.ru/hmcvao
- ID: 690984
Цитировать
Полный текст



Аннотация
В работе исследована единичная ячейка перезаряжаемого химического источника тока (ХИТ) – водородно-ванадиевой батареи ((Pt–C)H2 Nafion VO2+(С)), при варьировании содержания серной кислоты в ванадиевом электролите (католите) в диапазоне от 3 до 6 М общего содержания сернокислотных остатков и суммарной концентрации соединений ванадия 1 М. Для этого диапазона составов получены зависимости напряжения ячейки (НРЦ) и потенциалов ее полуэлементов (ПРЦ) в состоянии разомкнутой цепи от соотношения ванадил: ванадат в составе электролита, а также измерены вольт-амперные характеристики при пропускании через ячейку токов различного направления. Разделение вкладов потенциалов обоих полуэлементов и их поляризации в напряжение ячейки реализовано при помощи внешнего электрода сравнения, подведенного к ванадиевому проточному электроду с использованием пленочного капилляра Луггина. Измерены удельные электропроводности ванадиевого электролита различного состава и зависимость этой величины от соотношения ванадил/ванадат в нем на различных этапах заряд-разрядного цикла. Обнаружено, что с увеличением кислотности католита функционирующая на нем ячейка демонстрирует снижение максимальной удельной мощности разряда с 0.68 до 0.45 Вт/см2, причиной которого является концентрационная поляризация как положительного, так и отрицательного полуэлементов в области высоких токов, с гораздо большим относительным вкладом последней. В области малых токов (±0.25 A/cм2) вольт-амперные характеристики обоих полуэлементов линейны, а их наклоны (поляризационные сопротивления) возрастают с ростом кислотности электролита для водородного полуэлемента и снижаются для ванадиевого, вследствие чего их сумма (полное сопротивление ячейки) в диапазоне исследуемых кислотностей демонстрирует прирост от 0.34 до 0.39 Ом см2.
Об авторах
О. И. Истакова
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН; Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
Email: oistakova@gmail.com
Черноголовка, Россия; Москва, Россия
Д. В. Конев
Федеральный исследовательский центр проблем химической физики и медицинской химии РАН; Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
Email: dkfrvzh@yandex.ru
Черноголовка, Россия; Москва, Россия
Д. О. Толстель
Московский государственный университет имени М. В. ЛомоносоваМосква, Россия
М. А. Воротынцев
Институт физической химии и электрохимии им. А. Н. Фрумкина РАНМосква, Россия
Список литературы
- Moore, M., Counce, R., Watson, J., and Zawodzinski, T., A comparison of the capital costs of a vanadium redox-flow battery and a regenerative hydrogen-vanadium fuel cell, J. Adv. Chem. Eng., 2015, vol. 5, no. 4, Article number 1000140.
- Chakrabarti, B.K., Kalamaras, E., Ouyang, M., Liu, X., Remy, G., Wilson, P.F., Williams, M.A., Rubio-Garcia, J., Yufit, V., Bree, G., Hajimolana, Y.S., Singh, A., Tariq, F., Low, C.T.J., Wu, B., George, C., and Brandon, N.P., Trichome-like carbon-metal fabrics made of carbon microfibers, carbon nanotubes, and Fe-based nanoparticles as electrodes for regenerative hydrogen/vanadium flow cells, ACS Appl. Nano Mater., 2021, vol. 4, no. 10, p. 10754.
- Hsu, N.Y., Devi, N., Lin, Y.I., Hu, Y.H., and Ku, H.H., Study on the effect of electrode configuration on the performance of a hydrogen/vanadium redox flow battery, Renewable Energy, 2022, vol. 190, p. 658.
- Zhang, K., Zheng, X., Liu, S., Xie, Z., Liu, Z., Zhu, Z., Jiang, T., Wang, W., Wang, M., Ma, Y., Meng, Y., Peng, Q., and Chen, W., High-rate, two-electron-transfer vanadium-hydrogen gas battery, Electrochim. Acta, 2023, vol. 469, Article number 143216.
- Bard, A.J., Standard Potentials in Aqueous Solution, London: Routledge, 2017. 848 p.
- Antipov, A., Pichugov, R., Abunaeva, L., Tong, S., Petrov, M., Pustovalova, A., and Glazkov, A., Halogen hybrid flow batteries advances for stationary chemical power sources technologies, Energies, 2022, vol. 15, no. 19, Article number 7397.
- Xie, F., Zhang, X., and Pan, Z., Electrochemical systems for renewable energy conversion and storage: Focus on flow batteries and regenerative fuel cells, Curr. Opin. Electrochem., 2024, p. Article number 101596.
- Zhang, Z., Mao, J., and Liu, Z., Advancements and insights in thermal and water management of proton exchange membrane fuel cells: Challenges and prospects, Int. Commun. Heat Mass Transf., 2024, vol. 153, Article number 107376.
- Rubio-Garcia, J., Cui, J., Parra-Puerto, A., and Kucernak, A., Hydrogen/vanadium hybrid redox flow battery with enhanced electrolyte concentration, Energy Storage Mater., 2020, vol. 31, p. 1.
- Parra-Puerto, A., Rubio-Garcia, J., Cui, J., and Kucernak, A., High energy density hydrogen/vanadium hybrid redox flow battery utilizing HCl as a supporting electrolyte, Electrochem. Soc. Meet. Abstr., 2020, no. 4, p. 800.
- Chakrabarti, B.K., Feng, J., Kalamaras, E., Rubio-Garcia, J., George, C., Luo, H., and Brandon, N.P., Hybrid redox flow cells with enhanced electrochemical performance via binderless and electrophoretically deposited nitrogen-doped graphene on carbon paper electrodes, ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 48, p. 53869.
- Chakrabarti, B., Yufit, V., Kavei, A., Xia, Y., Stevenson, G., Kalamaras, E., and Brandon, N., Charge/discharge and cycling performance of flexible carbon paper electrodes in a regenerative hydrogen/vanadium fuel cell, Int. J. Hydrogen Energy, 2019, vol. 44, no. 57, p. 30093.
- Dowd, R.P., Lakhanpal, V.S., and Van Nguyen, T., Performance evaluation of a hydrogen-vanadium reversible fuel cell, J. Electrochem. Soc., 2017, vol. 164, no. 6, p. F564.
- Tenny, K.M., Lakhanpal, V.S., Dowd, R.P., Yarlagadda, V., and Van Nguyen, T., Impact of multi-walled carbon nanotube fabrication on carbon cloth electrodes for hydrogen-vanadium reversible fuel cells, J. Electrochem. Soc., 2017, vol. 164, no. 12, p. A2534.
- Dowd, R.P., Verma, A., Li, Y., Powers, D., Wycisk, R., Pintauro, P.N., and Van Nguyen, T., A hydrogen-vanadium reversible fuel cell crossover study, J. Electrochem. Soc., 2017, vol. 164, no. 14, p. F1608.
- Feng, W., Zeng, Y., and Zhou, X., A three-dimensional, multi-physics model of a hydrogen vanadium rebalance cell, J. Energy Storage, 2024, vol. 92, Article number 111964.
- Muñoz, C.P., Dewage, H.H., Yufit, V., and Brandon, N.P., A unit cell model of a regenerative hydrogen-vanadium fuel cell, J. Electrochem. Soc., 2017, vol. 164, no. 14, p. F1717.
- Istakova, O.I., Konev, D.V., Tolstel, D.O., Ruban, E.A., Krasikova, M.S., and Vorotyntsev, M.A., A high discharge power density single cell of hydrogen–vanadium flow battery, Russ. J. Electrochem., 2024, vol. 60, no. 9, p. 716.
- Петухова, Э.А., Ершова, В.С., Терентьев, А.В., Рубан, Е.А., Пичугов, Р.Д., Конев, Д.В., Усенко, А. А. Кулонометрический метод анализа для определения концентрации и степени окисления ванадия в электролите ванадиевой проточной батареи с использованием водородно-ванадиевой ячейки. Конденсированные среды и межфазные границы. 2025. Т. 27. № 1. С. 128. [Petukhova, E.A., Ershova, V.S., Terent’ev, A.V., Ruban, E.A., Pichugov, R.D., Konev, D.V., and Usenko, A.A., Coulometric method for analyzing vanadium concentration and oxidation state in vanadium redox battery electrolyte using a hydrogen-vanadium cell, Condensed Matter and Interphases, 2025, vol. 27, no. 1, p 128.]
- Darling, H.E., Conductivity of sulfuric acid solutions, J. Chem. Eng. Data, 1964, vol. 9, no. 3, p. 421.
- Glazkov, A., Pichugov, R., Loktionov, P., Konev, D., Tolstel, D., Petrov, M., and Vorotyntsev, M.A., Current distribution in the discharge unit of a 10-cell vanadium redox flow battery: Comparison of the computational model with experiment, Membranes, 2022, vol. 12, no. 11, Article number 1167.
- Zhao, X., Kim, Y.B., and Jung, S., Shunt current analysis of vanadium redox flow battery system with multi-stack connections, J. Energy Storage, 2023, vol. 73, Article number 109233.
- Delgado, N.M., Monteiro, R., Cruz, J., Bentien, A., and Mendes, A., Shunt currents in vanadium redox flow batteries – a parametric and optimization study, Electrochim. Acta, 2022, vol. 403, Article number 139667.
Дополнительные файлы
