Possibilities and Limitations of Using the Olfactory Bulb Removal Model in Rodents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Here, we review current data that provide a basis for using the olfactory bulbectomy model as a model of mental disorders in humans. Based on extensive literature and our own data, we have shown the possibilities of using the olfactory bulbectomy model in rodents as a model of depression and Alzheimer's disease, taking into account the correspondence of the observed changes with modern criteria of validity. The removal of olfactory bulbs causes a complex of molecular, structural, and behavioral changes in animals, which cannot serve as an ideal model for certain disease. The review discusses the limitations of using this model and interpreting the results. Nevertheless, this model can be a useful tool for both basic and applied studies of brain pathologies, taking into account these limitations.

Full Text

Restricted Access

About the authors

O. A. Nedogreeva

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Author for correspondence.
Email: nedogreewa_olga@gmail.com
Russian Federation, Moscow

M. Yu. Stepanichev

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Email: nedogreewa_olga@gmail.com
Russian Federation, Moscow

References

  1. Wessler S (1976) Introduction: What is a model? In: Animal Models of Thrombosis and Hemorrhagic Diseases. Proc. of the Workshop on Animal Models of Thrombosis and Hemorrhagic Diseases. March 12–13, 1975. Washington, D.C. U.S. Dept. Health, Education, and Welfare. Washington. D.C. xi–xvi.
  2. Overmier J, Patterson J (1988) Animal models of human psychopathology. In: Simon P, Soubrié P, Widlocher D (eds) Selected models of anxiety, depression and psychosis. Basel: Karger. 1–35.
  3. Belzung C, Lemoine M (2011) Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biol Mood Anxiety Disord 1: 9. https://doi.org/10.1186/2045-5380-1-9
  4. Papp M, Willner P (2023) Models of Affective Illness: Chronic Mild Stress in the Rat. Curr Protoc 3: e712. https://doi.org/10.1002/cpz1.712
  5. Willner P (2005) Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52: 90–110. https://doi.org/10.1159/000087097
  6. Willner P, Mitchell PJ (2002) The validity of animal models of predisposition to depression. Behav Pharmacol 13: 169–188. https://doi.org/10.1097/00008877-200205000-00001
  7. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacol (Berl) 134: 319–329. https://doi.org/10.1007/s002130050456
  8. Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16: 1210–1214. https://doi.org/10.1038/nm.2224
  9. Watson JB (1907) Kinæsthetic and organic sensations: Their role in the reactions of the white rat to the maze. Psychol Rev: Monograph Suppl 8: 1–101. https://doi.org/10.1037/h0093040
  10. Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29: 627–647.
  11. Hendriksen H, Mechiel Korte S, Olivier B, Oosting RS (2015) The olfactory bulbectomy model in mice and rat: One story or two tails? Eur J Pharmacol 753: 105–113.
  12. Morales-Medina JC, Iannitti T, Freeman A, Caldwell HK (2017) The olfactory bulbectomized rat as a model of depression: The hippocampal pathway. Behav Brain Res 317: 562–575. https://doi.org/10.1016/j.bbr.2016.09.029
  13. Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: An update. Pharmacol Ther 74: 299–316. https://doi.org/10.1016/s0163-7258(97)00004-1
  14. Leonard BE (1984) The olfactory bulbectomized rat as a model of depression. Pol J Pharmacol Pharm 36: 561–569.
  15. Yehuda S, Rabinovitz S (2014) Olfactory bulbectomy as a putative model for Alzheimer: The protective role of essential fatty acids. Pharma Nutrition 2: 12–18. https://doi.org/10.1016/j.phanu.2013.10.002
  16. Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB (2024) A mouse model of sporadic Alzheimer’s disease with elements of major depression. Mol Neurobiol 62(2): 1337–1358. https://doi.org/10.1007/s12035-024-04346-7
  17. Gulyaeva NV, Bobkova NV, Kolosova NG, Samokhin AN, Stepanichev MY, Stefanova NA (2017) Molecular and Cellular Mechanisms of Sporadic Alzheimer’s Disease: Studies on Rodent Models in vivo. Biochemistry (Mosc) 82: 1088–1102. https://doi.org/10.1134/S0006297917100029
  18. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders. Am Psychiatr Associat.
  19. Манолова АО, Степаничев МЮ, Гуляева НВ (2018) Поведение крыс в тесте вынужденного плавания не является однозначным предиктором развития ангедонии при хроническом стрессе. Журн высш нерв деят им ИП Павлова 68: 488–495. [Manolova AO, Stepanichev MYu, Gulyaeva NV (2018) Behavior of rats in the forced swim test does not unequivocally predict development of anhedonia during chronic stress. Zhurn Vyssh Nerv Deyat im IP Pavlova 68: 488–495. (In Russ)]. https://doi.org/10.1134/S0044467718040111
  20. Григорьян ГА, Гуляева НВ (2015) Моделирование депрессии на животных: поведение как основа методологии, критериев оценки и классификации. Журн высш нерв деят им ИП Павлова 65: 643–660. [Grigoryan GA, Gulyaeva NV (2015) Modeling of depression in animals: Behavior as a basis of methodology, assessment criteria, and classification. Zhurn Vyssh Nerv Deyat im IP Pavlova 65: 643–660. (In Russ)]. https://doi.org/10.7868/S0044467715060052
  21. Stepanichev M, Markov D, Pasikova N, Gulyaeva N (2016) Behavior and the cholinergic parameters in olfactory bulbectomized female rodents: Difference between rats and mice. Behav Brain Res 297: 5–14. https://doi.org/10.1016/j.bbr.2015.09.033
  22. Romeas T, Morissette MC, Mnie-Filali O, Piñeyro G, Boye SM (2009) Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression. Psychopharmacol (Berl) 205: 293–303. https://doi.org/10.1007/S00213-009-1539-Y
  23. Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de Souza LF, Dafre AL, Leal RB, Rodrigues AL (2013) Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 237: 176–184. https://doi.org/10.1016/J.BBR.2012.09.035
  24. Rinwa P, Kumar A (2014) Panax quinquefolium involves nitric oxide pathway in olfactory bulbectomy rat model. Physiol Behav 129: 142–151. https://doi.org/10.1016/J.PHYSBEH.2014.02.037
  25. Rafało‐Ulińska A, Pochwat B, Misztak P, Misztak P, Bugno R, Kryczyk-Poprawa A, Opoka W, Muszyńska B, Poleszak E, Nowak G, Szewczyk B (2022) Zinc deficiency blunts the effectiveness of antidepressants in the olfactory bulbectomy model of depression in rats. Nutrients 14(13): 2746. https://doi.org/10.3390/NU14132746
  26. Slotkin TA, Miller DB, Fumagalli F, McCook EC, Zhang J, Bissette G, Seidler FJ (1999) Modeling geriatric depression in animals: biochemical and behavioral effects of olfactory bulbectomy in young versus aged rats. J Pharmacol Exp Ther 289: 334–345.
  27. Vinkers CH, Breuer ME, Westphal KGC, Korte SM, Oosting RS, Olivier B, Groenink L (2009) Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage. Neuroscience 159: 39–46. https://doi.org/10.1016/j.neuroscience.2008.12.009
  28. Гуревич ЕВ, Бобкова НВ, Катков ЮА, Отмахова НА, Нестерова ИВ (1992) Поведенческие и биохимические последствия удаления обонятельных луковиц у мышей C57Bl/6j. Журн высш нерв деят им ИП Павлова 42: 779–787. [Gurevich EV, Bobkova NV, Katkov YuA, Otmakhova NA, Nesterova IV (1992) Behavioral and biochemical consequences of olfactory bulbectomy in C57Bl/6j mice. Zhurn Vyssh Nerv Deyat im IP Pavlova 42: 779–787. (In Russ)].
  29. Недогреева ОА, Степаничев МЮ, Гуляева НВ (2020) Удаление обонятельных луковиц у мышей приводит к изменениям эмоционального поведения. Журн высш нерв деят им ИП Павлова 70: 104–114. [Nedogreeva OA, Stepanichev MYu, Gulyaeva NV (2020) Removal of the olfactory bulbs results in alterations of emotional behavior. Zhurn Vyssh Nerv Deyat im IP Pavlova 70: 104–114. (In Russ)].
  30. Недогреева ОА, Лазарева НА, Степаничев МЮ, Гуляева НВ (2020) Нарушения формирования памяти и развитие временного холинергического дефицита у мышей после удаления обонятельных луковиц. Журн высш нерв деят им ИП Павлова 70: 794–806. [Nedogreeva OA, Lazareva NA, Stepanichev MYu, Gulyaeva NV (2020) Impairments of memory formation and development of transient cholinergic deficit in mice after olfactory bulbectomy. Zhurn Vyssh Nerv Deyat im IP Pavlova 70: 794–806. (In Russ)]. https://doi.org/10.31857/S0044467720060076
  31. Zueger M, Urani A, Chourbaji S, Zacher C, Roche M, Harkin A, Gass P (2005) Olfactory bulbectomy in mice induces alterations in exploratory behavior. Neurosci Lett 374: 142–146. https://doi.org/10.1016/j.neulet.2004.10.040
  32. Prendergast BJ, Galang J, Kay LM, Pyter LM (2009) Influence of the olfactory bulbs on blood leukocytes and behavioral responses to infection in Siberian hamsters. Brain Res 1268: 48–57. https://doi.org/10.1016/J.BRAINRES.2009.01.025
  33. Mucignat-Caretta C, Bondí M, Caretta A (2006) Time course of alterations after olfactory bulbectomy in mice. Physiol Behav 89: 637–643. https://doi.org/10.1016/j.physbeh.2006.08.003
  34. Lumia A, Teicher M, Salchli F, Ayers E, Possidente B (1992) Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res 587: 181–185. https://doi.org/10.1016/0006-8993(92)90995-L
  35. Hjorth-Simonsen A, Jeune B (1972) Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144: 215–232. https://doi.org/10.1002/cne.901440206
  36. Kosel KC, Van Hoesen GW, West JR (1981) Olfactory bulb projections to the parahippocampal area of the rat. J Comp Neurol 198: 467–482. https://doi.org/10.1002/cne.901980307
  37. Wrynn AS, Mac Sweeney CP, Franconi F, Lemaire L, Pouliquen D, Herlidou S, Leonard BE, Gandon J, de Certaines JD (2000) An in-vivo magnetic resonance imaging study of the olfactory bulbectomized rat model of depression. Brain Res 879: 193–199. https://doi.org/10.1016/s0006-8993(00)02619-6
  38. Koliatsos VE, Dawson TM, Kecojevic A, Zhou Y, Wang YF, Huang KX (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons. Proc Natl Acad Sci U S A 101: 14264–14269. https://doi.org/10.1073/pnas.0404364101
  39. Pope K, Wilson DA (2007) Olfactory system modulation of hippocampal cell death. Neurosci Lett 422: 13–17. https://doi.org/10.1016/j.neulet.2007.05.041
  40. Nesterova IV, Bobkova NV, Medvinskaya NI, Samokhin AN, Aleksandrova IYu (2008) Morphofunctional state of neurons in the temporal cortex and hippocampus in relation to the level of spatial memory in rats after ablation of the olfactory bulbs. Neurosci Behav Physiol 38: 349–353. https://doi.org/10.1007/s11055-008-0048-5
  41. Borre YE, Panagaki T, Koelink PJ, Morgan ME, Hendriksen H, Garssen J, Kraneveld AD, Olivier B, Oosting RS (2014) Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology 79: 738–749. https://doi.org/10.1016/j.neuropharm.2013.11.009
  42. Hu J, Huang H-Z, Wang X, Xie AJ, Wang X, Liu D, Wang JZ, Zhu LQ (2015) Activation of glycogen synthase kinase-3 mediates the olfactory deficit-induced hippocampal impairments. Mol Neurobiol 52: 1601–1617. https://doi.org/10.1007/s12035-014-8953-9
  43. Jarosik J, Legutko B, Unsicker K, von Bohlen Und Halbach O (2007) Antidepressant-mediated reversal of abnormal behavior and neurodegeneration in mice following olfactory bulbectomy. Exp Neurol 204: 20–28. https://doi.org/10.1016/j.expneurol.2006.09.008
  44. Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19: 2171–2180. https://doi.org/10.1523/JNEUROSCI.19-06-02171.1999
  45. Keilhoff G, Becker A, Grecksch G, Bernstein HG, Wolf G (2006) Cell proliferation is influenced by bulbectomy and normalized by imipramine treatment in a region-specific manner. Neuropsychopharmacology 31: 1165–1176. https://doi.org/10.1038/SJ.NPP.1300924
  46. Mitrusková B, Orendácová J, Raceková E (2005) Fluoro Jade-B detection of dying cells in the SVZ and RMS of adult rats after bilateral olfactory bulbectomy. Cell Mol Neurobiol 25: 1255–1264. https://doi.org/10.1007/s10571-005-8502-1
  47. Hellweg R, Zueger M, Fink K, Hörtnagl H, Gass P (2007) Olfactory bulbectomy in mice leads to increased BDNF levels and decreased serotonin turnover in depression-related brain areas. Neurobiol Dis 25: 1–7. https://doi.org/10.1016/j.nbd.2006.07.017
  48. Kang H-J, Kim J-M, Bae K-Y, Kim SW, Shin IS, Kim HR, Shin MG, Yoon JS (2015) Longitudinal associations between BDNF promoter methylation and late-life depression. Neurobiol Aging 36(4): 1764.e1–1764.e7. https://doi.org/10.1016/j.neurobiolaging.2014.12.035
  49. Li D, Cai Z, Wu J, Zhang Y (2019) Bax inhibitor-1 overexpression in prelimbic cortex protects rats against depression-like behavior induced by olfactory bulbectomy and reduces apoptotic and inflammatory signals. Neurol Res 41: 369–377. https://doi.org/10.1080/01616412.2019.1565649
  50. Coppola DM, Parrish Waters R (2021) The olfactory bulbectomy disease model: A Re-evaluation. Physiol Behav 240: 113548. https://doi.org/10.1016/j.physbeh.2021.113548
  51. Косенко ЕА (2019) Загадка Алоиза Альцгеймера. Почему в XXI веке болезнь Альцгеймера неизлечима? М. Наука. [Kosenko EA (2019) The mystery of Alois Alzheimer. Why is Alzheimer's disease incurable in the 21st century? Nauka. M. (In Russ)].
  52. Tremblay C, Serrano G, Intorcia A, Sue LI, Wilson JR, Adler CH, Shill HA, Driver-Dunckley E, Mehta SH, Beach TG (2022) Effect of olfactory bulb pathology on olfactory function in normal aging. Brain Pathol 32: e13075. https://doi.org/10.1111/BPA.13075
  53. Franco R, Garrigós C, Lillo J (2024) The olfactory trail of neurodegenerative diseases. Cells 13: 615. https://doi.org/10.3390/cells13070615
  54. Kovács T, Cairns NJ, Lantos PL (2001) Olfactory centres in Alzheimer’s disease: Olfactory bulb is involved in early Braak’s stages. Neuroreport 12: 285–288. https://doi.org/10.1097/00001756-200102120-00021
  55. Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili K, Miklossy J (2003) Early olfactory involvement in Alzheimer’s disease. Can J Neurol Sci 30: 20–25. https://doi.org/10.1017/s0317167100002389
  56. Lu J, Testa N, Jordan R, Elyan R, Kanekar S, Wang J, Eslinger P, Yang QX, Zhang B, Karunanayaka PR (2019) Functional connectivity between the resting-state olfactory network and the hippocampus in Alzheimer’s disease. Brain Sci 9: 338. https://doi.org/10.3390/brainsci9120338
  57. Otmakhova NA, Gurevich EV, Katkov YA, Nesterova IV, Bobkova NV (1992) Dissociation of multiple behavioral effects between olfactory bulbectomized C57Bl/6J and DBA/2J mice. Physiol Behav 52: 441–448. https://doi.org/10.1016/0031-9384(92)90329-z
  58. Beauchamp GK, Magnus JG, Shmunes NT, Durham T (1977) Effects of olfactory bulbectomy on social behavior of male guinea pigs (Cavia procellus). J Comp Physiol Psychol 91: 336–346. https://doi.org/10.1037/h0077327
  59. Scholfield CN, Moroni F, Corradetti R, Pepeu G (1983) Levels and synthesis of glutamate and aspartate in the olfactory cortex following bulbectomy. J Neurochem 41: 135–138. https://doi.org/10.1111/j.1471-4159.1983.tb11824.x
  60. Sandberg M, Bradford HF, Richards CD (1984) Effect of lesions of the olfactory bulb on the levels of amino acids and related enzymes in the olfactory cortex of the guinea pig. J Neurochem 43: 276–279. https://doi.org/10.1111/j.1471-4159.1984.tb06709.x
  61. Murphy MR (1976) Olfactory stimulation and olfactory bulb removal: Effects on territorial aggression in male Syrian golden hamsters. Brain Res 113: 95–110. https://doi.org/10.1016/0006-8993(76)90009-3
  62. Meisami E, Mousavi R (1981) Lasting effects of early olfactory deprivation on the growth, DNA, RNA and protein content, and Na-K-ATPase and AChE activity of the rat olfactory bulb. Dev Brain Res 2: 217–229. https://doi.org/10.1016/0165-3806(81)90033-X
  63. Royet JP, Jourdan F, Ploye H, Souchier C (1989) Morphometric modifications associated with early sensory experience in the rat olfactory bulb: II. Stereological study of the population of olfactory glomeruli. J Comp Neurol 289: 594–609. https://doi.org/10.1002/cne.902890406
  64. Royet JP, Souchier C, Jourdan F, Ploye H (1988) Morphometric study of the glomerular population in the mouse olfactory bulb: Numerical density and size distribution along the rostrocaudal axis. J Comp Neurol 270: 559–568. https://doi.org/10.1002/cne.902700409
  65. Frazier LL, Brunjes PC (1988) Unilateral odor deprivation: Early postnatal changes in olfactory bulb cell density and number. J Comp Neurol 269: 355–370. https://doi.org/10.1002/cne.902690304
  66. Brunjes PC, Smith-Crafts LK, McCarty R (1985) Unilateral odor deprivation: Effects on the development of olfactory bulb catecholamines and behavior. Dev Brain Res 22: 1–6. https://doi.org/10.1016/0165-3806(85)90063-X
  67. Kovacs T (2004) Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 3: 215–232. https://doi.org/10.1016/j.arr.2003.10.003
  68. Brunjes PC (1992) Lessons from lesions: the effects of olfactory bulbectomy. Chem Senses 17: 729–763. https://doi.org/10.1093/chemse/17.6.729
  69. Bajaj S, Mahesh R (2024) Converged avenues: Depression and Alzheimer’s disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 51: 225. https://doi.org/10.1007/s11033-023-09170-1
  70. Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q (2024) Monoamine alterations in Alzheimer’s disease and their implications in comorbid neuropsychiatric symptoms. Geroscience. https://doi.org/10.1007/s11357-024-01359-x
  71. Zhang NK, Zhang SK, Zhang LI, Tao HW, Zhang GW (2024) The neural basis of neuropsychiatric symptoms in Alzheimer’s disease. Front Aging Neurosci 16: 1487875. https://doi.org/10.3389/fnagi.2024.1487875
  72. Marin-Marin L, Renau-Lagranja J, Ávila C, Costumero V (2024) Depression and agitation factors are related to regional brain atrophy and faster longitudinal cognitive decline in mild cognitive impairment. J Alzheimers Dis 97: 1341–1351. https://doi.org/10.3233/JAD-230929
  73. El Haffaf LM, Ronat L, Cannizzaro A, Hanganu A; Alzheimer’s Disease Neuroimaging Initiative (2024) Associations between hyperactive neuropsychiatric symptoms and brain morphology in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 97: 841–853. https://doi.org/10.3233/JAD-220857
  74. Jaako-Movits K, Zharkovsky A (2005) Impaired fear memory and decreased hippocampal neurogenesis following olfactory bulbectomy in rats. Eur J Neurosci 22: 2871–2878. https://doi.org/10.1111/j.1460-9568.2005.04481.x
  75. Douma TN, Borre Y, Hendriksen H, Olivier B, Oosting RS (2011) Simvastatin improves learning and memory in control but not in olfactory bulbectomized rats. Psychopharmacology (Berl) 216: 537–544. https://doi.org/10.1007/s00213-011-2245-0
  76. Ivanova M, Belcheva S, Belcheva I, Negrev N, Tashev R (2012) Lateralized hippocampal effects of vasoactive intestinal peptide on learning and memory in rats in a model of depression. Psychopharmacology (Berl) 221: 561–574. https://doi.org/10.1007/s00213-011-2600-1
  77. Borre Y, Bosman E, Lemstra S, Westphal KG, Olivier B, Oosting RS (2012) Memantine partly rescues behavioral and cognitive deficits in an animal model of neurodegeneration. Neuropharmacology 62: 2010–2017. https://doi.org/10.1016/j.neuropharm.2011.12.034
  78. Borre Y, Sir V, de Kivit S, Westphal KG, Olivier B, Oosting RS (2012) Minocycline restores spatial but not fear memory in olfactory bulbectomized rats. Eur J Pharmacol 697: 59–64. https://doi.org/10.1016/J.EJPHAR.2012.09.005
  79. Van Hoomissen J, Kunrath J, Dentlinger R, Lafrenz A, Krause M, Azar A (2011) Cognitive and locomotor/exploratory behavior after chronic exercise in the olfactory bulbectomy animal model of depression. Behav Brain Res 222: 106–116. https://doi.org/10.1016/j.bbr.2011.03.017
  80. Hall RD, Macrides F (1983) Olfactory bulbectomy impairs the rat’s radial-maze behavior. Physiol Behav 30: 797–803. https://doi.org/10.1016/0031-9384(83)90180-4
  81. Amemori T, Ermakova IV, Buresová O, Zigová T, Racekova E, Bures J (1989) Brain transplants enhance rather than reduce the impairment of spatial memory and olfaction in bulbectomized rats. Behav Neurosci 103: 61–70. https://doi.org/10.1037//0735-7044.103.1.61
  82. Bobkova N, Vorobyov V, Medvinskaya N, Aleksandrova I, Nesterova I (2008) Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels. Brain Res 1232: 185–194. https://doi.org/10.1016/j.brainres.2008.07.036
  83. Bobkova NV, Medvinskaya NI, Kamynina AV, Aleksandrova IY, Nesterova IV, Samokhin AN, Koroev DO, Filatova MP, Nekrasov PV, Abramov AY, Leonov SV, Volpina OM (2014) Immunization with either prion protein fragment 95–123 or the fragment-specific antibodies rescue memory loss and neurodegenerative phenotype of neurons in olfactory bulbectomized mice. Neurobiol Learn Mem 107: 50–64. https://doi.org/10.1016/j.nlm.2013.10.019
  84. Bobkova N, Vorobyov V, Medvinskaya N, Nesterova I, Tatarnikova O, Nekrasov P, Samokhin A, Deev A, Sengpiel F, Koroev D, Volpina O (2016) Immunization against specific fragments of neurotrophin p75 receptor protects forebrain cholinergic neurons in the olfactory bulbectomized mice. J Alzheimers Dis 53: 289–301. https://doi.org/10.3233/JAD-160146
  85. Nedogreeva OA, Evtushenko NA, Manolova AO, Peregud DI, Yakovlev AA, Lazareva NA, Gulyaeva NV, Stepanichev MY (2021) Oxidative damage of proteins precedes loss of cholinergic phenotype in the septal neurons of olfactory bulbectomized mice. Curr Alzheimer Res 18: 1140–1151. https://doi.org/10.2174/1567205019666211223094051
  86. Gomita Y, Ueki S (1980) Effects of limbic lesions, especially of olfactory bulbectomy on simple conditioned avoidance response in rats. J Pharmacobiodyn 3: 94–104. https://doi.org/10.1248/bpb1978.3.94
  87. Gomita Y, Ogawa N, Ueki S (1984) Effect of bilateral olfactory bulbectomy on discrimination avoidance conditioning in rats. Physiol Behav 32: 1011–1016. https://doi.org/10.1016/0031-9384(84)90294-4
  88. Velikova M, Doncheva D, Tashev R (2020) Subchronic effects of ligands of cannabinoid receptors on learning and memory processes of olfactory bulbectomized rats. Acta Neurobiol Exp (Wars) 80: 286–296.
  89. Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18: 794–799. https://doi.org/10.1038/nn.4017
  90. Tse K-H, Herrup K (2017) Re-imagining Alzheimer’s disease – the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 143: 432–444. https://doi.org/10.1111/jnc.14079
  91. Avetisyan A, Balasanyants S, Simonyan R, Koroev D, Kamynina A, Zinovkin R, Bobkova N, Volpina O (2020) Synthetic fragment (60–76) of RAGE improves brain mitochondria function in olfactory bulbectomized mice. Neurochem Int 140: 104799. https://doi.org/10.1016/j.neuint.2020.104799
  92. Aleksandrova IY, Kuvichkin VV, Kashparov IA, Medvinskaya NI, Nesterova IV, Lunin SM, Samokhin AN, Bobkova NV (2004) Increased level of beta-amyloid in the brain of bulbectomized mice. Biochemistry (Mosc) 69: 176–180. https://doi.org/10.1023/b:biry.0000018948.04559.ab
  93. Avetisyan AV, Samokhin AN, Alexandrova IY, Zinovkin RA, Simonyan RA, Bobkova NV (2016) Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized mice, a model of Alzheimer’s disease. Biochemistry (Mosc) 81: 615–623. https://doi.org/10.1134/S0006297916060080
  94. Zhao X, Zhou Q, Zhang H, Ono M, Furuyama T, Yamamoto R, Ishikura T, Kumai M, Nakamura Y, Shiga H, Miwa T, Kato N (2025) Olfactory deprivation promotes amyloid β deposition in a mouse model of Alzheimer's disease. Brain Res 1851: 149500. https://doi.org/10.1016/j.brainres.2025.149500
  95. Dias D, Socodato R (2025) Beyond amyloid and tau: The critical role of microglia in Alzheimer's disease therapeutics. Biomedicines 13: 279. https://doi.org/10.3390/biomedicines13020279
  96. Kim Y, Ha TY, Lee MS, Chang KA (2025) Regulatory mechanisms and therapeutic implications of lysosomal dysfunction in Alzheimer's disease. Int J Biol Sci 21: 1014–1031. https://doi.org/10.7150/ijbs.103028
  97. Galindo-Paredes G, Flores G, Morales-Medina JC (2023) Olfactory bulbectomy induces nociceptive alterations associated with gliosis in male rats. IBRO Neurosci Rep 14: 494–506. https://doi.org/10.1016/j.ibneur.2023.05.006
  98. Takahashi K, Nakagawasai O, Nemoto W, Kadota S, Isono J, Odaira T, Sakuma W, Arai Y, Tadano T, Tan-No K (2018) Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice. Neuropharmacology 137: 141–155. https://doi.org/10.1016/j.neuropharm.2018.04.013
  99. Pilar-Cuellar F, Castro E, Bretin S, Mocaer E, Pazos Á, Díaz Á (2019) S 47445 counteracts the behavioral manifestations and hippocampal neuroplasticity changes in bulbectomized mice. Prog Neuropsychopharmacol Biol Psychiatry 93: 205–213. https://doi.org/10.1016/j.pnpbp.2019.04.005
  100. Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, Ginsberg SD, Nixon RA (2016) Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12: 2467–2483. https://doi.org/10.1080/15548627.2016.1239003
  101. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, Perluigi M, Butterfield DA (2015) Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): Analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133: 739–749. https://doi.org/10.1111/jnc.13037
  102. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J Biol Chem 285: 13107–13120. https://doi.org/10.1074/jbc.M110.100420
  103. Hu J, Wang X, Liu D, Wang Q, Zhu LQ (2012) Olfactory deficits induce neurofilament hyperphosphorylation. Neurosci Lett 506: 180–183. https://doi.org/10.1016/j.neulet.2011.10.076
  104. Li K, Liu F-F, He C-X, Huang HZ, Xie AJ, Hu F, Liu D, Wang JZ, Zhu LQ (2016) Olfactory deprivation hastens Alzheimer-like pathologies in a human tau-overexpressed mouse model via activation of cdk5. Mol Neurobiol 53: 391–401. https://doi.org/10.1007/s12035-014-9007-z
  105. Tasset I, Medina FJ, Peña J, Jimena I, Del Carmen Muñoz M, Salcedo M, Ruiz C, Feijóo M, Montilla P, Túnez I (2010) Olfactory bulbectomy induced oxidative and cell damage in rat: Protective effect of melatonin. Physiol Res 59: 105–112. https://doi.org/10.33549/PHYSIOLRES.931684
  106. Tasset I, Peña J, Jimena I, Feijóo M, Del Carmen Muñoz M, Montilla P, Túnez I (2008) Effect of 17beta-estradiol on olfactory bulbectomy-induced oxidative stress and behavioral changes in rats. Neuropsychiatr Dis Treat 4: 441–449.
  107. Almeida RF de, Ganzella M, Machado DG, Loureiro SO, Leffa D, Quincozes-Santos A, Pettenuzzo LF, Duarte MMMF, Duarte T, Souza DO (2017) Olfactory bulbectomy in mice triggers transient and long-lasting behavioral impairments and biochemical hippocampal disturbances. Prog Neuropsychopharmacol Biol Psychiatry 76: 1–11. https://doi.org/10.1016/j.pnpbp.2017.02.013
  108. Yoshimura H, Gomita Y, Ueki S (1974) Changes in acetylcholine content in rat brain after bilateral olfactory bulbectomy in relation to mouse-killing behavior. Pharmacol Biochem Behav 2: 703–705.
  109. Hozumi S, Nakagawasai O, Tan-no K, Niijima F (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138: 9–15.
  110. Broekkamp CL, O’Connor WT, Tonnaer JADM, Rijk HW, Van Delft AM (1986) Corticosterone, choline acetyltransferase and noradrenaline levels in olfactory bulbectomized rats in relation to changes in passive avoidance acquisition and open field activity. Physiol Behav 37: 429–434. https://doi.org/10.1016/0031-9384(86)90201-5
  111. Yoshimura H (1981) Regional changes in brain cholinergic enzyme activities after bilateral olfactory bulbectomy in relation to mouse-killing behavior by rats. Pharmacol Biochem Behav 15: 517–520. https://doi.org/10.1016/0091-3057(81)90288-4
  112. Earley B, Glennon M, Lally M, Leonard BE, Junien J-L (1994) Autoradiographic distribution of cholinergic muscarinic receptors and serotonin2 receptors in olfactory bulbectomized (OB) rats after chronic treatment with mianserin and desipramine. Hum Psychopharmacol: Clinical Exp 9: 397–407. https://doi.org/10.1002/HUP.470090603
  113. Slotkin TA, Seidler FJ (2006) Cholinergic receptor subtypes in the olfactory bulbectomy model of depression. Brain Res Bull 68: 341–345. https://doi.org/10.1016/j.brainresbull.2005.09.005
  114. Han F, Shioda N, Moriguchi S, Qin ZH, Fukunaga K (2008) The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neurodegeneration in olfactory bulbectomized mice. Neuroscience 151: 671–679. https://doi.org/10.1016/j.neuroscience.2007.11.011
  115. Bobkova NV, Nesterova IV, Nesterov VV (2001) The state of cholinergic structures in forebrain of bulbectomized mice. Bull Exp Biol Med 131: 427–431. https://doi.org/10.1023/a:1017907511482
  116. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221: 555–563.
  117. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24: 1217–1281. https://doi.org/10.1146/annurev.neuro.24.1.1217
  118. Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M (2011) The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 221: 515–526. https://doi.org/10.1016/J.BBR.2010.02.024
  119. Antunes MS, Jesse CR, Ruff JR, de Oliveira Espinosa D, Gomes NS, Altvater EET, Donato F, Giacomeli R, Boeira SP (2016) Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity. Eur J Pharmacol 789: 411–420. https://doi.org/10.1016/j.ejphar.2016.07.042
  120. Hendriksen H, Meulendijks D, Douma TN, Bink DI, Breuer ME, Westphal KG, Olivier B, Oosting RS (2012) Environmental enrichment has antidepressant-like action without improving learning and memory deficits in olfactory bulbectomized rats. Neuropharmacology 62: 270–277.
  121. Takahashi K, Nakagawasai O, Nemoto W, Odaira T, Arai Y, Hisamitsu T, Tan-No K (2017) Time-dependent role of prefrontal cortex and hippocampus on cognitive improvement by aripiprazole in olfactory bulbectomized mice. Eur Neuropsychopharmacol 27: 1000–1010. https://doi.org/10.1016/j.euroneuro.2017.08.071
  122. Song C, Xiang YZ, Manku M (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: Effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 29: 14–22. https://doi.org/10.1523/JNEUROSCI.3569-08.2009
  123. Bruno F, Abondio P, Montesanto A, Luiselli D, Bruni AC, Maletta R (2023) The nerve growth factor receptor (NGFR/p75NTR): A major player in Alzheimer’s disease. Int J Mol Sci 24: 3200. https://doi.org/10.3390/ijms24043200
  124. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11: 131–133. https://doi.org/10.1038/nn2038
  125. Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE (2022) ProBDNF and brain-derived neurotrophic factor prodomain differently modulate acetylcholine release in regenerating and mature mouse motor synapses. Front Cell Neurosci 16: 866802. https://doi.org/10.3389/fncel.2022.866802
  126. Молчанова АИ, Балезина ОП, Гайдуков АЕ (2024) Продомен BDNF тормозит квантовую секрецию медиатора в моторных синапсах мыши при участии сортилина и аденозиновых А1-рецепторов. Рос физиол журн им ИМ Сеченова 110: 196–215. [Molchanova AI, Balezina OP, Gaidukov AE (2024) BDNF prodomain inhibits quantal secretion of the transmitter in mouse motor synapses involving sortilin and adenosine A1-receptors. Russ J Physiol 110: 196–215. (In Russ)]. https://doi.org/10.31857/S0869813924020045
  127. Uramoto N, Miwa T, Donjyo T, Ishimaru T, Furukawa M (1998) [Study of the function of nerve growth factor in the olfactory tract of the mouse]. Nihon Jibiinkoka Gakkai Kaiho 101: 908–915. https://doi.org/10.3950/jibiinkoka.101.7_908
  128. Van der Staay FJ (2006) Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. Brain Res Rev 52: 131–159. https://doi.org/10.1016/j.brainresrev.2006.01.006
  129. Odendaal L, Quek H, Cuní-López C, White AR, Stewart R (2025) The role of air pollution and olfactory dysfunction in alzheimer’s disease pathogenesis. Biomedicines 13: 246. https://doi.org/10.3390/biomedicines13010246

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the validity of olfactory bulbectomy as a model of depression and Alzheimer's disease.

Download (188KB)

Copyright (c) 2025 Russian Academy of Sciences