Necroptosis, Autophagy and Parthanatos in the Pathogenesis of Brain Diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Necroptosis, autophagy and parthanatos are three interrelated mechanisms of programmed cell death that exert a significant impact on the health and pathology of the central nervous system. They participate in maintaining cellular homeostasis by eliminating damaged or nonfunctional cells, as well as in shaping the neuroinflammatory response. Dysregulation of these processes is associated with a range of neurological and psychiatric disorders – from neurodegeneration in Alzheimer’s and Parkinson’s diseases to depressive and schizophrenic conditions. This paper summarizes clinical and preclinical data describing the roles of necroptosis, autophagy and parthanatos in the pathogenesis of brain diseases. It also discusses experimental models that enable the study of these forms of cell death and the testing of new therapeutic approaches. A thorough understanding of the molecular mechanisms underlying these processes opens up opportunities for the development of drugs capable of simultaneously modulating multiple signaling pathways, thereby improving the prevention, diagnosis, and treatment of central nervous system disorders.

Full Text

Restricted Access

About the authors

N. I. Golushko

Almazov National Medical Research Center; Saint Petersburg State University

Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg

D. D. Martynov

Almazov National Medical Research Center; Saint Petersburg State University

Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg

A. S. Lebedev

Almazov National Medical Research Center; Saint Petersburg State University; Sirius University of Science and Technology

Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg; Sirius Federal Territory

N. P. Ilyin

Almazov National Medical Research Center; Saint Petersburg State University

Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg

D. S. Galstyan

Almazov National Medical Research Center; Saint Petersburg State University

Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg

A. V. Kaluev

Almazov National Medical Research Center; Saint Petersburg State University; Sirius University of Science and Technology

Author for correspondence.
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg; Sirius Federal Territory

References

  1. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol 18(5): 1106–1121. https://doi.org/10.1038/s41423-020-00630-3
  2. Syntichaki P, Tavernarakis N (2002) Death by necrosis. EMBO Rep 3(7): 604–609. https://doi.org/10.1093/embo-reports/kvf138
  3. Yan J, Wan P, Choksi S, Liu Z-G (2022) Necroptosis and tumor progression. Trends Cancer 8(1): 21–27. https://doi.org/10.1016/j.trecan.2021.09.003
  4. Park MY, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Abusaliya A, Kim GS (2021) Differences of key proteins between apoptosis and necroptosis. Biomed Res Int 2021(1): 3420168. https://doi.org/10.1155/2021/3420168
  5. Al-Lamki R, Lu W, Manalo P, Wang J, Warren A, Tolkovsky A, Pober J, Bradley J (2016) Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis. Cell Death Dis 7(6): e2287-e. https://doi.org/10.1038/cddis.2016.184
  6. Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ on 24(7): 1184–1195. https://doi.org/10.1038/cdd.2017.65
  7. Du J, Wang Z (2024) Regulation of RIPK1 phosphorylation: Implications for inflammation, cell death, and therapeutic interventions. Biomedicines 12(7): 1525. https://doi.org/10.3390/biomedicines12071525
  8. Seo J, Nam YW, Kim S, Oh D-B, Song J (2021) Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med 53(6): 1007–1017. https://doi.org/10.1038/s12276-021-00634-7
  9. Mompeán M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, Wu H, McDermott AE (2018) The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173(5): 124412–124453.e10. https://doi.org/10.1016/j.cell.2018.03.032
  10. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137(6): 1100–1111. https://doi.org/10.1016/j.cell.2009.05.021
  11. Zhang D-W, Shao J, Lin J, Zhang N, Lu B-J, Lin S-C, Dong M-Q, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938): 332–336. https://doi.org/10.1126/science.1172308
  12. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1): 213–227. https://doi.org/10.1016/j.cell.2011.11.031
  13. Galluzzi L, Kepp O, Chan FK-M, Kroemer G (2017) Necroptosis: Mechanisms and relevance to disease. Annu Rev Pathol 12(1): 103–130. https://doi.org/10.1146/annurev-pathol-052016-100247
  14. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong Y-N (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5): 1189–1202. https://doi.org/10.1016/j.cell.2014.04.018
  15. Someda M, Kuroki S, Miyachi H, Tachibana M, Yonehara S (2020) Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis. Cell Death Differ 27(5): 1539–1553. https://doi.org/10.1038/s41418-019-0434-2
  16. Feoktistova M, Geserick P, Panayotova-Dimitrova D, Leverkus M (2012) Pick your poison: The Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell cycle 11(3): 460–467. https://doi.org/10.4161/cc.11.3.19060
  17. Yu Z, Jiang N, Su W, Zhuo Y (2021) Necroptosis: A novel pathway in neuroinflammation. Front Pharmacol 12: 701564. https://doi.org/10.3389/fphar.2021.701564
  18. Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J, Ward Y, Wu L-G, Liu Z-G (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1): 55–65. https://doi.org/10.1038/ncb2883
  19. Chen X, Li W, Ren J, Huang D, He W-T, Song Y, Yang C, Li W, Zheng X, Chen P (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1): 105–121. https://doi.org/10.1038/cr.2013.171
  20. Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18: 1–17. https://doi.org/10.1186/s12943-019-1029-8
  21. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13: 1–18. https://doi.org/10.1186/s13045-020-00946-7
  22. Najafov A, Chen H, Yuan J (2017) Necroptosis and cancer. Trends Cancer 3(4): 294–301. https://doi.org/10.1016/j.trecan.2017.03.002
  23. Liu Z-G, Jiao D (2020) Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 4(1): 1. https://doi.org/10.15698/cst2020.01.208
  24. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10): 700–714. https://doi.org/10.1038/nrm2970
  25. Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, Hashimoto H, Mak TW, Yagita H, Okumura K (2001) Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J Biol Chem 276(39): 36530–36534. https://doi.org/10.1074/jbc.M104837200
  26. Zhang L, Blackwell K, Shi Z, Habelhah H (2010) The RING domain of TRAF2 plays an essential role in the inhibition of TNFα-induced cell death but not in the activation of NF-κB. J Mol Biol 396(3): 528–539. https://doi.org/10.1016/j.jmb.2010.01.008
  27. Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301): 1084–1088. https://doi.org/10.1038/nature09128
  28. Zhang J, Kong X, Zhou C, Li L, Nie G, Li X (2014) Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways. Fish Shellfish Immunol 41(2): 380–388. https://doi.org/10.1016/j.fsi.2014.09.022
  29. Ermolaeva MA, Michallet M-C, Papadopoulou N, Utermöhlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9(9): 1037–1046. https://doi.org/10.1038/ni.1638
  30. Li H, Kobayashi M, Blonska M, You Y, Lin X (2006) Ubiquitination of RIP is required for tumor necrosis factor α-induced NF-κB activation. J Biol Chem 281(19): 13636–13643. https://doi.org/10.1074/jbc.M600620200
  31. O’Donnell MA, Ting AT (2012) NFκB and ubiquitination: Partners in disarming RIPK1-mediated cell death. Immunol Res 54: 214–226. https://doi.org/10.1007/s12026-012-8321-7
  32. Nakabayashi O, Takahashi H, Moriwaki K, Komazawa-Sakon S, Ohtake F, Murai S, Tsuchiya Y, Koyahara Y, Saeki Y, Yoshida Y (2021) MIND bomb 2 prevents RIPK1 kinase activity-dependent and-independent apoptosis through ubiquitylation of cFLIPL. Commun Biol 4(1): 80. https://doi.org/10.1038/s42003-020-01603-y
  33. Wang H, Meng H, Li X, Zhu K, Dong K, Mookhtiar AK, Wei H, Li Y, Sun S-C, Yuan J (2017) PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci U S A 114(45): 11944–11949. https://doi.org/10.1073/pnas.1715742114
  34. Lork M, Verhelst K, Beyaert R (2017) CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ 24(7): 1172–1183. https://doi.org/10.1038/cdd.2017.46
  35. Zhu T, Wu B-W (2024) Recognition of necroptosis: From molecular mechanisms to detection methods. Biomed Pharmacother 178: 117196. https://doi.org/10.1016/j.biopha.2024.117196
  36. Belizário J, Vieira-Cordeiro L, Enns S (2015) Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediat Inflamm 2015(1): 128076. https://doi.org/10.1155/2015/128076
  37. Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin C, Brunk U, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6): 922–930. https://doi.org/10.1038/cdd.2009.184
  38. Mizushima N, Komatsu M (2011) Autophagy: Renovation of cells and tissues. Cell 147(4): 728–741. https://doi.org/10.1016/j.cell.2011.10.026
  39. Nie T, Zhu L, Yang Q (2021) The classification and basic processes of autophagy. Autophagy: Biol Dis Technol Methodol: 3–16. https://doi.org/10.1007/978-981-16-2830-6_1
  40. Ravikumar B, Futter M, Jahreiss L, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Narayanan U, Renna M (2009) Mammalian macroautophagy at a glance. J Cell Sci 122(11): 1707–1711. https://doi.org/10.1242/jcs.031773
  41. Mejlvang J, Olsvik H, Svenning S, Bruun J-A, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T (2018) Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 217(10): 3640–3655. https://doi.org/10.1083/jcb.201711002
  42. Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9): 831–835. https://doi.org/10.1038/ncb0910-831
  43. Lefebvre C, Legouis R, Culetto E (2018) ESCRT and autophagies: Endosomal functions and beyond. Semin Cell Dev Biol 74: 21–28. https://doi.org/10.1016/j.semcdb.2017.08.014
  44. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1): 131–139. https://doi.org/10.1016/j.devcel.2010.12.003
  45. Lamark T, Johansen T (2021) Mechanisms of selective autophagy. Annu Rev Cell Dev Biol 37(1): 143–169. https://doi.org/10.1146/annurev-cellbio-120219-035530
  46. Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen HM (2022) Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm 3(3): e150. https://doi.org/10.1002/mco2.150
  47. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3): 460–473. https://doi.org/10.1089/ars.2013.5371
  48. Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14(10): 1024–1035. https://doi.org/10.1038/ncb2589
  49. Yao R, Shen J (2023) Chaperone–mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm 4(5): e347. https://doi.org/10.1002/mco2.347
  50. Chaudhary S, Dhiman A, Dilawari R, Chaubey GK, Talukdar S, Modanwal R, Patidar A, Malhotra H, Raje CI, Raje M (2021) Glyceraldehyde-3-Phosphate dehydrogenase facilitates macroautophagic degradation of mutant huntingtin protein aggregates. Mol Neurobiol 58(11): 5790–5798. https://doi.org/10.1007/s12035-021-02532-5
  51. Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM (2010) Identification of regulators of chaperone-mediated autophagy. Mol Cell 39(4): 535–547. https://doi.org/10.1016/j.molcel.2010.08.004
  52. Orenstein SJ, Cuervo AM (2010) Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21(7): 719–726. https://doi.org/10.1016/j.semcdb.2010.02.005
  53. Bandyopadhyay U, Cuervo AM (2008) Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy 4(8): 1101–1103. https://doi.org/10.4161/auto.7150
  54. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial–linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8): 2000–2016. https://doi.org/10.1111/bph.12416
  55. Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: Parthanatos. Ann N Y Acad Sci 1147(1): 233–241. https://doi.org/10.1196/annals.1427.014
  56. Huang P, Chen G, Jin W, Mao K, Wan H, He Y (2022) Molecular mechanisms of parthanatos and its role in diverse diseases. Int J Mol Sci 23(13): 7292. https://doi.org/10.3390/ijms23137292
  57. Wang X, Ge P (2020) Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 449: 241–250. https://doi.org/10.1016/j.neuroscience.2020.09.049
  58. Aki T, Funakoshi T, Uemura K (2015) Regulated necrosis and its implications in toxicology. Toxicology 333: 118–126. https://doi.org/10.1016/j.tox.2015.04.003
  59. Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35: 24–32. https://doi.org/10.1016/j.semcdb.2014.02.006
  60. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5): 347–364. https://doi.org/10.1038/s41422-019-0164-5
  61. Yang L, Guttman L, Dawson VL, Dawson TM (2024) Parthanatos: mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 228: 116174. https://doi.org/10.1016/j.bcp.2024.116174
  62. Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C (2016) A nuclease that mediates cell death induced by DNA damage and poly (ADP-ribose) polymerase-1. Science 354(6308): aad6872. https://doi.org/10.1126/science.aad6872
  63. Liu S, Luo W, Wang Y (2022) Emerging role of PARP-1 and PARthanatos in ischemic stroke. J Neurochem 160(1): 74–87. https://doi.org/10.1111/jnc.15464
  64. Kong D, Zhu J, Liu Q, Jiang Y, Xu L, Luo N, Zhao Z, Zhai Q, Zhang H, Zhu M (2017) Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy. Cell Mol Neurobiol 37: 303–313. https://doi.org/10.1007/s10571-016-0370-3
  65. Harrision D, Gravells P, Thompson R, Bryant HE (2020) Poly (ADP-ribose) glycohydrolase (PARG) vs. poly (ADP-ribose) polymerase (PARP)-function in genome maintenance and relevance of inhibitors for anti-cancer therapy. Front Mol Biosci 7: 191. https://doi.org/10.3389/fmolb.2020.00191
  66. Wang H, Yu S-W, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24(48): 10963–10973. https://doi.org/10.1523/JNEUROSCI.3461-04.2004
  67. Mitroshina EV, Saviuk M, Vedunova MV (2023) Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 14: 1016053. https://doi.org/10.3389/fnagi.2022.1016053
  68. Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF (2023) Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 11(9): 2488. https://doi.org/10.3390/biomedicines11092488
  69. Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song B-J (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 1637: 34–55. https://doi.org/10.1016/j.brainres.2016.02.016
  70. Arrázola MS, Lira M, Véliz-Valverde F, Quiroz G, Iqbal S, Eaton SL, Lamont DJ, Huerta H, Ureta G, Bernales S (2023) Necroptosis inhibition counteracts neurodegeneration, memory decline, and key hallmarks of aging, promoting brain rejuvenation. Aging Cell 22(5): e13814. https://doi.org/10.1111/acel.13814
  71. Thadathil N, Nicklas EH, Mohammed S, Lewis TL, Richardson A, Deepa SS (2021) Necroptosis increases with age in the brain and contributes to age-related neuroinflammation. Geroscience 43: 2345–2361. https://doi.org/10.1007/s11357-021-00448-5
  72. Shields DC, Haque A, Banik NL (2020) Neuroinflammatory responses of microglia in central nervous system trauma. J Cereb Blood Flow Metab 40: S25–S33. https://doi.org/10.1177/0271678X20965786
  73. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1): 19–33. https://doi.org/10.1038/s41583-018-0093-1
  74. Zhao Q, Yu X, Zhang H, Liu Y, Zhang X, Wu X, Xie Q, Li M, Ying H, Zhang H (2017) RIPK3 mediates necroptosis during embryonic development and postnatal inflammation in Fadd-deficient mice. Cell Rep 19(4): 798–808. https://doi.org/10.1016/j.celrep.2017.04.011
  75. Royce GH, Brown-Borg HM, Deepa SS (2019) The potential role of necroptosis in inflammaging and aging. Geroscience 41(6): 795–811. https://doi.org/10.1007/s11357-019-00131-w
  76. Anosike NL, Adejuwon JF, Emmanuel GE, Adebayo OS, Etti-Balogun H, Nathaniel JN, Omotosho OI, Aschner M, Ijomone OM (2023) Necroptosis in the developing brain: Role in neurodevelopmental disorders. Metab Brain Dis 38(3): 831–837. https://doi.org/10.1007/s11011-023-01203-9
  77. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(23): 4081–4091. https://doi.org/10.1242/jcs.019265
  78. Pierone BC, Pereira CA, Garcez ML, Kaster MP (2020) Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp Neurol 334: 113485. https://doi.org/10.1016/j.expneurol.2020.113485
  79. Belgrad J, De Pace R, Fields RD (2020) Autophagy in myelinating glia. J Neurosci 40(2): 256–266. https://doi.org/10.1523/JNEUROSCI.1066-19.2019
  80. Bai I, Keyser C, Zhang Z, Rosolia B, Hwang J-Y, Zukin RS, Yan J (2024) Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 15: 1322842. https://doi.org/10.3389/fimmu.2024.1322842
  81. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34: 1021–1029. https://doi.org/10.1007/s11064-008-9865-8
  82. Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V (2022) Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. Int J Mol Sci 23(22): 14498. https://doi.org/10.3390/ijms232214498
  83. Gómez-Virgilio L, Silva-Lucero M-D-C, Flores-Morelos D-S, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez A-M, Zacapala-Gómez A-E, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO (2022) Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells 11(15): 2262. https://doi.org/10.3390/cells11152262
  84. Kenney DL, Benarroch EE (2015) The autophagy-lysosomal pathway: General concepts and clinical implications. Neurology 85(7): 634–645. https://doi.org/10.1212/WNL.0000000000001860
  85. Metaxakis A, Ploumi C, Tavernarakis N (2018) Autophagy in age-associated neurodegeneration. Cells 7(5): 37. https://doi.org/10.3390/cells7050037
  86. Liang Y (2019) Emerging concepts and functions of autophagy as a regulator of synaptic components and plasticity. Cells 8(1): 34. https://doi.org/10.3390/cells8010034
  87. Nikoletopoulou V, Sidiropoulou K, Kallergi E, Dalezios Y, Tavernarakis N (2017) Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab 26(1): 230–242.e5. https://doi.org/10.1016/j.cmet.2017.06.005
  88. Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang D-W, Zhao G (2023) The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 8(1): 304. https://doi.org/10.1038/s41392-023-01503-7
  89. Sidibe DK, Kulkarni VV, Dong A, Herr JB, Vogel MC, Stempel MH, Maday S (2022) Brain-derived neurotrophic factor stimulates the retrograde pathway for axonal autophagy. J Biol Chem 298(12): 102673. https://doi.org/10.1016/j.jbc.2022.102673
  90. Ou-Yang P, Cai Z-Y, Zhang Z-H (2023) Molecular regulation mechanism of microglial autophagy in the pathology of Alzheimer's disease. Aging Dis 14(4): 1166. https://doi.org/10.14336/AD.2023.0106
  91. Xu X, Sun B, Zhao C (2023) Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 106314. https://doi.org/10.1016/j.nbd.2023.106314
  92. Min W, Cortes U, Herceg Z, Tong W-M, Wang Z-Q (2010) Deletion of the nuclear isoform of poly (ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis 31(12): 2058–2065. https://doi.org/10.1093/carcin/bgq205
  93. Hong S, Yi JH, Lee S, Park C-H, Ryu JH, Shin KS, Kang SJ (2019) Defective neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis 10(12): 943. https://doi.org/10.1038/s41419-019-2174-0
  94. Kölliker-Frers R, Udovin L, Otero-Losada M, Kobiec T, Herrera MI, Palacios J, Razzitte G, Capani F (2021) Neuroinflammation: An integrating overview of reactive‐Neuroimmune cell interactions in health and disease. Mediat Inflamm 2021(1): 9999146. https://doi.org/10.1155/2021/9999146
  95. Craft JM, Watterson DM, Van Eldik LJ (2005) Neuroinflammation: A potential therapeutic target. Expert Opin Ther Targets 9(5): 887–900. https://doi.org/10.1517/14728222.9.5.887
  96. Skoblenick K, Castellano J, Rogoza R, Dyck B, Thomas N, Gabriele J, Chong V, Mishra R (2006) Translocation of AIF in the human and rat striatum following protracted haloperidol, but not clozapine treatment. Apoptosis 11: 663–672. https://doi.org/10.1007/s10495-006-5698-6
  97. Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z (2022) Targeting necroptosis as a promising therapy for Alzheimer’s disease. ACS Chem Neurosci 13(12): 1697–1713. https://pubs.acs.org/doi/10.1021/acschemneuro.2c00172
  98. Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN (2017) Necroptosis activation in Alzheimer's disease. Nat Neurosci 20(9): 1236–1246. https://doi.org/10.1038/nn.4608
  99. Zhang R, Song Y, Su X (2023) Necroptosis and Alzheimer’s disease: Pathogenic mechanisms and therapeutic opportunities. J Alzheimers Dis 94(s1): S367–S86. https://doi.org/10.3233/JAD-220809
  100. Salvadores N, Moreno-Gonzalez I, Gamez N, Quiroz G, Vegas-Gomez L, Escandón M, Jimenez S, Vitorica J, Gutierrez A, Soto C (2022) Aβ oligomers trigger necroptosis-mediated neurodegeneration via microglia activation in Alzheimer’s disease. Acta Neuropathol Commun 10(1): 31. https://doi.org/10.1186/s40478-022-01332-9
  101. Zou C, Mifflin L, Hu Z, Zhang T, Shan B, Wang H, Xing X, Zhu H, Adiconis X, Levin JZ (2020) Reduction of mNAT1/hNAT2 contributes to cerebral endothelial necroptosis and Aβ accumulation in Alzheimer’s disease. Cell Rep 33(10): 108447. https://doi.org/10.1016/j.celrep.2020.108447
  102. Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathol Commun 9: 1–21. https://doi.org/10.1186/s40478-021-01264-w
  103. Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: Pathogenesis and therapy. Brain Pathol 28(1): 3–13. https://doi.org/10.1111/bpa.12545
  104. Tung Y-T, Wang B-J, Hu M-K, Hsu W-M, Lee H, Huang W-P, Liao Y-F (2012) Autophagy: A double-edged sword in Alzheimer’s disease. J Biosci 37: 157–165. https://doi.org/10.1007/s12038-011-9176-0
  105. Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PloS One 8(5): e62459. https://doi.org/10.1371/journal.pone.0062459
  106. Lee J-H, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7): 1146–1158. https://doi.org/10.1016/j.cell.2010.05.008
  107. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5(1): 4998. https://doi.org/10.1038/ncomms5998
  108. Martire S, Mosca L, d’Erme M (2015) PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev 146: 53–64. https://doi.org/10.1016/j.mad.2015.04.001
  109. Abeti R, Abramov AY, Duchen MR (2011) β-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134(6): 1658–1672. https://doi.org/10.1093/brain/awr104
  110. Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, Wang C, Cho S-H, Gan L, Swanson RA (2011) Poly (ADP-ribose) polymerase-1 modulates microglial responses to amyloid β. J Neuroinflammation 8: 1–17. https://doi.org/10.1186/1742-2094-8-152
  111. Balestrino R, Schapira AH (2020) Parkinson disease. Eur J Neurol 27(1): 27–42. https://doi.org/10.1111/ene.14108
  112. Callizot N, Combes M, Henriques A, Poindron P (2019) Necrosis, apoptosis, necroptosis, three modes of action of dopaminergic neuron neurotoxins. PloS One 14(4): e0215277. https://doi.org/10.1371/journal.pone.0215277
  113. Oñate M, Catenaccio A, Salvadores N, Saquel C, Martinez A, Moreno-Gonzalez I, Gamez N, Soto P, Soto C, Hetz C (2020) The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell Death Differ 27(4): 1169–1185. https://doi.org/10.1038/s41418-019-0408-4
  114. Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A, Morabito G, Caporali L (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep 22(8): 2066–2079. https://doi.org/10.1016/j.celrep.2018.01.089
  115. Lee Y, Kang HC, Lee BD, Lee Y-I, Kim YP, Shin J-H (2014) Poly (ADP-ribose) in the pathogenesis of Parkinson's disease. BMB reports 47(8): 424. https://pmc.ncbi.nlm.nih.gov/articles/PMC4206713/
  116. Wang H, Shimoji M, Yu SW, Dawson TM, Dawson VL (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann N Y Acad Sci 991(1): 132–139. https://doi.org/10.1111/j.1749-6632.2003.tb07471.x
  117. Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, Kazantsev AG (2007) Pharmacological inhibition of PARP-1 reduces α-synuclein-and MPP+-induced cytotoxicity in Parkinson’s disease in vitro models. Biochem Biophys Res Commun 357(3): 596–602. https://doi.org/10.1016/j.bbrc.2007.03.163
  118. Liu J, Hu H, Wu B (2021) RIPK1 inhibitor ameliorates the MPP+/MPTP-induced Parkinson’s disease through the ASK1/JNK signalling pathway. Brain Res 1757: 147310. https://doi.org/10.1016/j.brainres.2021.147310
  119. Kim D-Y, Leem Y-H, Park J-S, Park J-E, Park J-M, Kang JL, Kim H-S (2023) RIPK1 regulates microglial activation in lipopolysaccharide-induced neuroinflammation and MPTP-induced Parkinson’s disease mouse models. Cells 12(3): 417. https://doi.org/10.3390/cells12030417
  120. Motawi TM, Abdel-Nasser ZM, Shahin NN (2020) Ameliorative effect of necrosulfonamide in a rat model of Alzheimer’s disease: Targeting mixed lineage kinase domain-like protein-mediated necroptosis. ACS Chem Neurosci 11(20): 3386–3397. https://pubs.acs.org/doi/10.1021/acschemneuro.0c00516
  121. Leem Y-H, Kim D-Y, Park J-E, Kim H-S (2023) Necrosulfonamide exerts neuroprotective effect by inhibiting necroptosis, neuroinflammation, and α-synuclein oligomerization in a subacute MPTP mouse model of Parkinson’s disease. Sci Rep 13(1): 8783. https://doi.org/10.1038/s41598-023-35975-y
  122. Graff S, Petkovic S (2019) Parkinson's disease: How do highly toxic α‐Synuclein/PAR aggregates mediate neuronal cell death? Mov Disord 34(5): 683. https://doi.org/10.1002/mds.27688
  123. Adamczyk A, Kaźmierczak A (2009) Alpha-synuclein inhibits poly (ADP-ribose) polymerase-1 (PARP-1) activity via NO-dependent pathway. Folia Neuropathol 47(3): 247–251. https://pubmed.ncbi.nlm.nih.gov/19813144/
  124. Kam T-I, Mao X, Park H, Chou S-C, Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S, Panicker N, Chen R (2018) Poly (ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362(6414): eaat8407. https://doi.org/10.1126/science.aat8407
  125. Li Y-Y, Qin Z-H, Sheng R (2024) The multiple roles of autophagy in neural function and diseases. Neurosci Bull 40(3): 363–382. https://doi.org/10.1007/s12264-023-01120-y
  126. Tripathi MK, Rajput C, Mishra S, Rasheed MSU, Singh MP (2019) Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: Feats, Constraints, and Flaws of modulators. Neurotox Res 35: 260–270. https://doi.org/10.1007/s12640-018-9917-z
  127. Lu J, Wu M, Yue Z (2020) Autophagy and Parkinson’s disease. Autophagy: Biol Dis Clin Sci: 21–51. https://doi.org/10.1007/978-981-15-4272-5_2
  128. Paykel ES (2008) Basic concepts of depression. Dialogues Clin Neurosci 10(3): 279–289. https://doi.org/10.31887/DCNS.2008.10.3/espaykel
  129. Zeb S, Ye H, Liu Y, Du H-P, Guo Y, Zhu Y-M, Ni Y, Zhang H-L, Xu Y (2023) Necroptotic kinases are involved in the reduction of depression-induced astrocytes and fluoxetine’s inhibitory effects on necroptotic kinases. Front Pharmacol 13: 1060954. https://doi.org/10.3389/fphar.2022.1060954
  130. Xu X, Yan Y, Yang Z, Zhang T (2024) Down-regulation of RIPK3 prevents depression-like behaviors by restoring the synaptic plasticity and suppressing neuronal loss. J Affect Disord 365: 213–221. https://doi.org/10.1016/j.jad.2024.08.088
  131. Gong Q, Ali T, Hu Y, Gao R, Mou S, Luo Y, Yang C, Li A, Li T, Hao LL (2024) RIPK1 inhibition mitigates neuroinflammation and rescues depressive-like behaviors in a mouse model of LPS-induced depression. Cell Commun Signal 22(1): 427. https://doi.org/10.1186/s12964-024-01796-3
  132. Duan Y-W, Chen S-X, Li Q-Y, Zang Y (2022) Neuroimmune mechanisms underlying neuropathic pain: The potential role of TNF-α-necroptosis pathway. Int J Mol Sci 23(13): 7191. https://doi.org/10.3390/ijms23137191
  133. Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y (2022) Dysmyelination by oligodendrocyte-specific ablation of Ninj2 contributes to depressive-like behaviors. Adv Sci 9(3): 2103065. https://doi.org/10.1002/advs.202103065
  134. Jia J, Le W (2015) Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci Bull 31: 427–434. https://doi.org/10.1007/s12264-015-1548-2
  135. Gassen NC, Rein T (2019) Is there a role of autophagy in depression and antidepressant action? Front Psychiatry 10: 337. https://doi.org/10.3389/fpsyt.2019.00337
  136. Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, Ding J, Lu M, Hu G (2019) The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 10(8): 577. https://doi.org/10.1038/s41419-019-1813-9
  137. Gan H, Ma Q, Hao W, Yang N, Chen Z-S, Deng L, Chen J (2024) Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res: 107112. https://doi.org/10.1016/j.phrs.2024.107112
  138. Hoseth EZ, Ueland T, Dieset I, Birnbaum R, Shin JH, Kleinman JE, Hyde TM, Mørch RH, Hope S, Lekva T (2017) A study of TNF pathway activation in schizophrenia and bipolar disorder in plasma and brain tissue. Schizophr Bull 43(4): 881–890. https://doi.org/10.1093/schbul/sbw183
  139. Shan B, Pan H, Najafov A, Yuan J (2018) Necroptosis in development and diseases. Genes Dev 32(5-6): 327–340. https://genesdev.cshlp.org/content/32/5-6/327.short
  140. Cui F, Gu S, Gu Y, Yin J, Fang C, Liu L (2021) Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC psychiatry 21: 1–9. https://doi.org/10.1186/s12888-021-03394-w
  141. Schneider JL, Miller AM, Woesner ME (2016) Autophagy and schizophrenia: a closer look at how dysregulation of neuronal cell homeostasis influences the pathogenesis of schizophrenia. EJBM 31(1–2): 34. https://pmc.ncbi.nlm.nih.gov/articles/PMC5321090/
  142. Tan Y, Zhu J, Hashimoto K (2024) Autophagy-related gene model as a novel risk factor for schizophrenia. Transl Psychiatry 14(1): 94. https://doi.org/10.1038/s41398-024-02767-5
  143. Bernstein H-G, Keilhoff G, Dobrowolny H, Steiner J (2020) Enhanced mitochondrial autophagy (mitophagy) in oligodendrocytes might play a role in white matter pathology in schizophrenia. Med Hypotheses 134: 109443. https://doi.org/10.1016/j.mehy.2019.109443
  144. Vucicevic L, Misirkic-Marjanovic M, Paunovic V, Kravic-Stevovic T, Martinovic T, Ciric D, Maric N, Petricevic S, Harhaji-Trajkovic L, Bumbasirevic V (2014) Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 10(12): 2362–2378. https://doi.org/10.4161/15548627.2014.984270
  145. Park H, Kam T-I, Dawson TM, Dawson VL (2020) Poly (ADP-ribose)(PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol 353: 1–29. https://doi.org/10.1016/bs.ircmb.2019.12.009
  146. Balusu S, De Strooper B (2024) The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease. Acta Neuropathol 147(1): 96. https://doi.org/10.1007/s00401-024-02747-5
  147. Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, Zhang D, Shen Y (2004) Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death. J Neurosci 24(7): 1760–1771. https://doi.org/10.1523/JNEUROSCI.4580-03.2004
  148. Dhuriya YK, Sharma D (2018) Necroptosis: A regulated inflammatory mode of cell death. J Neuroinflammation 15: 1–9. https://doi.org/10.1186/s12974-018-1235-0
  149. Chen X-Y, Dai Y-H, Wan X-X, Hu X-M, Zhao W-J, Ban X-X, Wan H, Huang K, Zhang Q, Xiong K (2022) ZBP1-mediated necroptosis: mechanisms and therapeutic implications. Molecules 28(1): 52. https://doi.org/10.3390/molecules28010052
  150. Dai W, Jiang L (2019) Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol 10: 570. https://doi.org/10.3389/fendo.2019.00570
  151. Araki T, Milbrandt J (2000) Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 20(1): 187–195. https://doi.org/10.1523/JNEUROSCI.20-01-00187.2000
  152. Bonam SR, Ruff M, Muller S (2019) HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells 8(8): 849. https://doi.org/10.3390/cells8080849
  153. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6): 365–381. https://doi.org/10.1038/s41580-018-0001-6
  154. Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z (2024) Lysosomal dysfunction in α-synuclein pathology: Molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 81(1): 382. https://doi.org/10.1007/s00018-024-05419-5
  155. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker I, Edmund B (2013) Autophagy: Regulation and role in development. Autophagy 9(7): 951–972. https://doi.org/10.4161/auto.24273
  156. Xu W, Tan L, Yu J-T (2015) The role of PICALM in Alzheimer’s disease. Mol Neurobiol 52(1): 399–413. https://doi.org/10.1007/s12035-014-8878-3
  157. Zhu C, Herbst S, Lewis PA (2023) Leucine-rich repeat kinase 2 at a glance. J Cell Sci 136(17): jcs259724. https://doi.org/10.1242/jcs.259724
  158. Recuero S, Delgado-Bermúdez A, Mateo-Otero Y, Garcia-Bonavila E, Llavanera M, Yeste M (2021) Parkinson disease protein 7 (PARK7) is related to the ability of mammalian sperm to undergo in vitro capacitation. Int J Mol Sci 22(19): 10804. https://doi.org/10.3390/ijms221910804
  159. Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA (2019) NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 30(20): 2584–2597. https://doi.org/10.1091/mbc.E18-10-0650
  160. Batnasan E, Wang R, Wen J, Ke Y, Li X, Bohio AA, Zeng X, Huo H, Han L, Boldogh I (2015) 17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha. Toxicol Lett 232(1): 1–9. https://doi.org/10.1016/j.toxlet.2014.09.024
  161. Wang Y, Dawson VL, Dawson TM (2009) Poly (ADP-ribose) signals to mitochondrial AIF: A key event in parthanatos. Exp Neurol 218(2): 193–202. https://doi.org/10.1016/j.expneurol.2009.03.020
  162. Moujalled D, Strasser A, Liddell JR (2021) Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 28(7): 2029–2044. https://doi.org/10.1038/s41418-021-00814-y
  163. Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21(10): 1370–1379. https://doi.org/10.1038/s41593-018-0236-8
  164. Albanese S, Greco A, Auletta L, Mancini M (2018) Mouse models of neurodegenerative disease: Preclinical imaging and neurovascular component. Brain Imaging Behav 12(4): 1160–1196. https://doi.org/10.1007/s11682-017-9770-3
  165. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106: 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001
  166. Italia M, Forastieri C, Longaretti A, Battaglioli E, Rusconi F (2020) Rationale, relevance, and limits of stress-induced psychopathology in rodents as models for psychiatry research: An introductory overview. Int J Mol Sci 21(20): 7455. https://doi.org/10.3390/ijms21207455
  167. Selvarani R, Van Michelle Nguyen H, Thadathil N, Wolf RF, Freeman WM, Wiley CD, Deepa SS, Richardson A (2023) Characterization of novel mouse models to study the role of necroptosis in aging and age-related diseases. GeroScience 45(6): 3241–3256. https://doi.org/10.1007/s11357-023-00955-7
  168. Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14: 1–14. https://doi.org/10.1186/s12943-015-0321-5
  169. Yue Z, Holstein GR, Chait BT, Wang QJ (2009) Using genetic mouse models to study the biology and pathology of autophagy in the central nervous system. Methods Enzymol 453: 159–180. https://doi.org/10.1016/S0076-6879(08)04008-1
  170. Wang Y-Q, Wang L, Zhang M-Y, Wang T, Bao H-J, Liu W-L, Dai D-K, Zhang L, Chang P, Dong W-W (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37: 1849–1858. https://doi.org/10.1007/s11064-012-0791-4
  171. Sun Y, Islam S, Michikawa M, Zou K (2024) Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer’s Disease and Other Neurodegenerative Diseases. Int J Mol Sci 25(3): 1757. https://doi.org/10.3390/ijms25031757
  172. Wahl D, Coogan SC, Solon-Biet SM, De Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG (2017) Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 12: 1419–1428. https://doi.org/10.2147/CIA.S145247
  173. Keller PJ (2013) In vivo imaging of zebrafish embryogenesis. Methods 62(3): 268–278. https://doi.org/10.1016/j.ymeth.2013.03.015
  174. Jontes JD, Emond MR (2012) Fluorescence imaging of transgenic zebrafish embryos. Cold Spring Harb Protoc prot069245. https://doi.org/10.1101/pdb.top069237
  175. Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T, Mizushima N (2016) An autophagic flux probe that releases an internal control. Mol Cell 64(4): 835–849. https://doi.org/10.1016/j.molcel.2016.09.037
  176. Cui J, Sim TH-F, Gong Z, Shen H-M (2012) Generation of transgenic zebrafish with liver-specific expression of EGFP-Lc3: A new in vivo model for investigation of liver autophagy. Biochem Biophys Res Commun 422(2): 268–273. https://doi.org/10.1016/j.bbrc.2012.04.145
  177. Shkarina K, Hasel de Carvalho E, Santos JC, Ramos S, Leptin M, Broz P (2022) Optogenetic activators of apoptosis, necroptosis, and pyroptosis. J Cell Biol 221(6): e202109038. https://doi.org/10.1083/jcb.202109038
  178. Eimon PM (2014) Studying apoptosis in the zebrafish. Methods Enzymol 545: 395–431. https://doi.org/10.1016/B978-0-12-417158-9.00016-9
  179. Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K (2024) A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 13(9): bio.060230. https://doi.org/10.1242/bio.060230
  180. Zeng C-W, Sheu J-C, Tsai H-J (2020) The neuronal regeneration of adult zebrafish after spinal cord injury is enhanced by transplanting optimized number of neural progenitor cells. Cell Transplant 29: 0963689720903679. https://doi.org/10.1177/0963689720903679
  181. Hu X-M, Li Z-X, Lin R-H, Shan J-Q, Yu Q-W, Wang R-X, Liao L-S, Yan W-T, Wang Z, Shang L (2021) Guidelines for regulated cell death assays: A systematic summary, a categorical comparison, a prospective. Front Cell Dev Biol 9: 634690. https://doi.org/10.3389/fcell.2021.634690
  182. Kist M, Vucic D (2021) Cell death pathways: Intricate connections and disease implications. EMBO J 40(5): e106700. https://doi.org/10.15252/embj.2020106700
  183. Stoica BA, Faden AI (2010) Programmed neuronal cell death mechanisms in CNS injury. Acute Neuronal Injury: 169–200. https://doi.org/10.1007/978-0-387-73226-8_12
  184. Martin LJ (2001) Neuronal cell death in nervous system development, disease, and injury. Int J Mol Med 7(5): 455–478. https://doi.org/10.3892/ijmm.7.5.455
  185. Button RW, Luo S, Rubinsztein DC (2015) Autophagic activity in neuronal cell death. Neurosci Bull 31: 382–394. https://doi.org/10.1007/s12264-015-1528-y
  186. Aggarwal S, Mannam P, Zhang J (2016) Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 311(2): L433–L452. https://doi.org/10.1152/ajplung.00128.2016
  187. Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, Lu RB, Hong JS (2015) Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 63(1): 118–131. https://doi.org/10.1002/glia.22738
  188. Kotova M, Apukhtin K, Nikitin S, Kalueff A (2024) Revisiting Functional Heterogeneity of Microglia and Astroglia. J Evol Biochem Physiol 60(6): 2172–2190. https://doi.org/10.1134/S0022093024060036
  189. Alam Q, Zubair Alam M, Mushtaq G, A Damanhouri G, Rasool M, Amjad Kamal M, Haque A (2016) Inflammatory process in Alzheimer’s and Parkinson's diseases: central role of cytokines. Curr Pharm Des 22(5): 541–548. https://doi.org/10.2174/1381612822666151125000300
  190. Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332: 16–30. https://doi.org/10.1016/j.jneuroim.2019.03.012
  191. Scarpitta A, Hacker UT, Büning H, Boyer O, Adriouch S (2021) Pyroptotic and necroptotic cell death in the tumor microenvironment and their potential to stimulate anti-tumor immune responses. Front Oncol 11: 731598. https://doi.org/10.3389/fonc.2021.731598
  192. Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R (2022) The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 79: 1–15. https://doi.org/10.1007/s00018-021-04109-w
  193. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6): 918–934. https://doi.org/10.1016/j.cell.2010.02.016
  194. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S (2017) Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci 11: 216. https://doi.org/10.3389/fncel.2017.00216
  195. Murta V, Farías MI, Pitossi FJ, Ferrari CC (2015) Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood–brain barrier integrity. J Neuroimmunol 278: 30–43. https://doi.org/10.1016/j.jneuroim.2014.11.023
  196. Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson P-J, Ericsson-Dahlstrand A (2001) Pathway across the blood–brain barrier. Nature 410(6827): 430–431. https://doi.org/10.1038/35068632
  197. Fedele M, Gualillo O, Vecchione A (2011) Animal models of human pathology. J Biomed Biotech 2011. https://doi.org/10.1155/2011/764618
  198. Yan L, Shi J, Zhu J (2024) Cellular and molecular events in colorectal cancer: Biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discover Oncol 15(1): 294. https://doi.org/10.1007/s12672-024-01163-1
  199. Santagostino SF, Assenmacher C-A, Tarrant JC, Adedeji AO, Radaelli E (2021) Mechanisms of regulated cell death: current perspectives. Vet Pathol 58(4): 596–623. https://doi.org/10.1177/03009858211005537
  200. Radogna F, Dicato M, Diederich M (2015) Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 94(1): 1–11. https://doi.org/10.1016/j.bcp.2014.12.018
  201. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta Mol Cell Res 1833(12): 3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
  202. Jain V, Singh MP, Amaravadi RK (2023) Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 44(5): 290–302. https://doi.org/10.1016/j.tips.2023.02.003
  203. Kovacs GG (2016) Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. Int J Mol Sci 17(2): 189. https://doi.org/10.3390/ijms17020189
  204. Wamsley B, Geschwind DH (2020) Functional genomics links genetic origins to pathophysiology in neurodegenerative and neuropsychiatric disease. Curr Opin Genet Dev 65: 117–125. https://doi.org/10.1016/j.gde.2020.05.032
  205. Ye K, Chen Z, Xu Y (2023) The double-edged functions of necroptosis. Cell Death Dis 14(2): 163. https://doi.org/10.1038/s41419-023-05691-6
  206. Khoury MK, Gupta K, Franco SR, Liu B (2020) Necroptosis in the pathophysiology of disease. Am J Pathol 190(2): 272–285. https://doi.org/10.1016/j.ajpath.2019.10.012
  207. Xu B, Fang J, Wang J, Jin X, Liu S, Song K, Wang P, Liu J, Liu S (2023) Inhibition of autophagy and RIP1/RIP3/MLKL-mediated necroptosis by edaravone attenuates blood spinal cord barrier disruption following spinal cord injury. Biomed Pharmacother 165: 115165. https://doi.org/10.1016/j.biopha.2023.115165
  208. Degterev A, Ofengeim D, Yuan J (2019) Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci USA 116(20): 9714–9722. https://doi.org/10.1073/pnas.1901179116
  209. Mishra J, Bhatti GK, Sehrawat A, Singh C, Singh A, Reddy AP, Reddy PH, Bhatti JS (2022) Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sci 311: 121153. https://doi.org/10.1016/j.lfs.2022.121153
  210. He S, Huang S, Shen Z (2016) Biomarkers for the detection of necroptosis. Cell Mol Life Sci 73: 2177–2181. https://doi.org/10.1007/s00018-016-2192-3
  211. Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, Whitehead LW, Light A, Young SN, Barrios M, Sargeant C (2024) An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol Med: 1–33. https://doi.org/10.1038/s44321-024-00074-6
  212. Sepand MR, Ranjbar S, Kempson IM, Akbariani M, Muganda WCA, Müller M, Ghahremani MH, Raoufi M (2020) Targeting non-apoptotic cell death in cancer treatment by nanomaterials: recent advances and future outlook. Nanomedicine 29: 102243. https://doi.org/10.1016/j.nano.2020.102243
  213. Lin YX, Wang Y, Wang H (2017) Recent advances in nanotechnology for autophagy detection. Small 13(33): 1700996. https://doi.org/10.1002/smll.201700996
  214. Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8(11): 4966–4982. https://doi.org/10.1021/pr9003739
  215. Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 45(1): 135. https://doi.org/10.1007/s12038-020-00099-2
  216. Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ (2013) Poly (ADP-ribose) signaling in cell death. Mol Asp Med 34(6): 1153–1167. https://doi.org/10.1016/j.mam.2013.01.007
  217. Bray SJ (2006) Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9): 678–689. https://doi.org/10.1038/nrm2009
  218. Lorzadeh S, Kohan L, Ghavami S, Azarpira N (2021) Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Res 1868(3): 118926. https://doi.org/10.1016/j.bbamcr.2020.118926

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the main signalling pathways leading to necroptosis, autophagy and parthanatos in CNS cells, including the interaction of TNFR with RIPK1/RIPK3 and MLKL, the role of PARP1/AIF in DNA damage, and the participation of PARG in PAR degradation, which affects the energy balance of the cell. The role of adaptor and regulatory proteins (FADD, TRADD, etc.) in switching different forms of programmed death is also shown.

Download (318KB)
3. Fig. 2. Main biological features and intersections of the three pathways of cell death - parthanatos, autophagy and necroptosis - based on the data used in this article, as well as taking into account information from works specialising in the differences and similarities of the listed processes [56, 201].

Download (184KB)

Copyright (c) 2025 Russian Academy of Sciences