The GluN3A Subunit Forms GluN3A-NMDAR and the Excitatory Glycine Receptor in the Olfactory Sensory Neurons of Adult Wistar Rats
- Authors: Bigday E.V.1, Zuykova A.A.1, Barmasova A.M.1, Razinova A.A.1, Pozdnyakov A.V.1, Ivanov D.O.1
-
Affiliations:
- Saint Petersburg State Pediatric University
- Issue: Vol 111, No 5 (2025)
- Pages: 790-805
- Section: EXPERIMENTAL ARTICLES
- URL: https://bulletin.ssaa.ru/0869-8139/article/view/686279
- DOI: https://doi.org/10.31857/S0869813925050096
- EDN: https://elibrary.ru/TNFGDO
- ID: 686279
Cite item
Abstract
The article presents experimental data obtained on isolated olfactory sensory neurons (OSN) of adult Wistar rats. The aim of the study was to show by in vivo fluorescent confocal microscopy using pharmacological analysis whether the GluN3A-subunit is localized in the olfactory sensory neurons of adult animals. Analysis of the results have revealed the presence of GluN3A-subunit in the OSN of adult rats as part of the excitatory glycine receptor and GluN3A containing N-methyl-D-aspartate receptor (GluN3A-NMDAR). In addition to them, the typical NMDAR and non-NMDAR are localized in the OSN. All these receptors can be located both in the same and in different receptor cells, which manifests the heterogeneity of the OSN in the olfactory epithelium.
Full Text

About the authors
E. V. Bigday
Saint Petersburg State Pediatric University
Author for correspondence.
Email: bigday50@mail.ru
Russian Federation, Saint Petersburg
A. A. Zuykova
Saint Petersburg State Pediatric University
Email: bigday50@mail.ru
Russian Federation, Saint Petersburg
A. M. Barmasova
Saint Petersburg State Pediatric University
Email: bigday50@mail.ru
Russian Federation, Saint Petersburg
A. A. Razinova
Saint Petersburg State Pediatric University
Email: bigday50@mail.ru
Russian Federation, Saint Petersburg
A. V. Pozdnyakov
Saint Petersburg State Pediatric University
Email: bigday50@mail.ru
Russian Federation, Saint Petersburg
D. O. Ivanov
Saint Petersburg State Pediatric University
Email: bigday50@mail.ru
Russian Federation, Saint Petersburg
References
- Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98(4): 427–436. https://doi.org/10.1016/s0092-8674(00)81972-8
- Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol Rev 62(3): 405–496. https://doi.org/10.1124/pr.109.002451
- Benarroch EE (2011) NMDA receptors: Recent insights and clinical correlations. Neurology 76(20): 1750–1757. https://doi.org/10.1212/WNL.0b013e31821b7cc9
- Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE (2013) Glutamate in schizophrenia: A focused review and meta-analysis of ¹H-MRS studies. Schizophr Bull 39(1): 120–129. https://doi.org/10.1093/schbul/sbr069
- Grand T, Abi Gerges S, David M, Diana MA, Paoletti P (2018) Unmasking GluN1/GluN3A excitatory glycine NMDA receptors. Nat Commun 9(1): 4769. https://doi.org/10.1038/s41467-018-07236-4
- Joo J-Y, Kim B-W, Lee J-S, Park J-Y, Kim S, Yun Y-J, Lee S-H, Lee S-H, Rhim H, Son H (2007) Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells. J Cell Sci 120(8): 1358–1370. https://doi.org/10.1242/jcs.002154
- Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M (2022) Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 27(5): 2380–2392. https://doi.org/10.1038/s41380-022-01506-w
- Chen T-S, Huang T-H, Lai M-C, Huang C-W (2023) The Role of Glutamate Receptors in Epilepsy. Biomedicines 11: 783. https://doi.org/10.3390/biomedicines1103078
- Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060): 1217–1221. https://doi.org/10.1126/science.256.5060.1217
- Chan SF, Sucher NJ (2001) An NMDA receptor signaling complex with protein phosphatase 2A. J Neurosci 21(20): 7985–7992. https://doi.org/10.1523/JNEUROSCI.21-20-07985.2001
- Mueller HT, Meador-Woodruff JH (2005) Distribution of the NMDA receptor GLUN3A subunit in the adult pig-tail macaque brain. J Chem Neuroanat 29(3): 157–172. https://doi.org/10.1016/j.jchemneu.2004.11.002
- Pérez-Otaño I, Larsen RS, Wesseling JF (2016) Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat Rev Neurosci 17(10): 623–635. https://doi.org/10.1038/nrn.2016.92
- Wyllie DJA, Bowie D (2022) Ionotropic glutamate receptors: Structure, function and dysfunction. J Physiol 600(2): 175–179. https://doi.org/10.1113/JP282389
- Wang LY, MacDonald JF (1995) Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal neurones. J Physiol 486 (Pt 1): 83–95. https://doi.org/10.1113/jphysiol.1995.sp020792
- Henson MA, Roberts AC, Salimi K, Vadlamudi S, Hamer RM, Gilmore JH, Jarskog LF, Philpot BD (2008) Developmental regulation of the NMDA receptor subunits, GLUN3A and GLUN1, in human prefrontal cortex. Cereb Cortex 18(11): 2560–2573. https://doi.org/10.1093/cercor/bhn017
- Yovanno RA, Chou TH, Brantley SJ, Furukawa H, Lau AY (2022) Excitatory and inhibitory D-serine binding to the NMDA receptor. Elife 11: e77645. https://doi.org/10.7554/eLife.77645
- Fan X, Jin WY, Wang YT (2014) The NMDA receptor complex: A multifunctional machine at the glutamatergic synapse. Front Cell Neurosci 8: 160. https://doi.org/10.3389/fncel.2014.00160
- Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF (2001) Assembly with the GLUN1 subunit is required for surface expression of GLUN3A-containing NMDA receptors. J Neurosci 21(4): 1228–1237. https://doi.org/10.1523/JNEUROSCI.21-04-01228.2001
- Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415(6873): 793–798. https://doi.org/10.1038/nature715
- Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15(10): 6509–6520. https://doi.org/10.1523/JNEUROSCI.15-10-06509.1995
- Banke TG, Traynelis SF (2003) Activation of GLUN1/GLUN2B NMDA receptors. Nat Neurosci 6(2): 144–152. https://doi.org/10.1038/nn1000
- Cavara NA, Hollmann M (2008) Shuffling the deck anew: How NR3 tweaks NMDA receptor function. Mol Neurobiol 38(1): 16–26. https://doi.org/10.1007/s12035-008-8029-9
- McClymont DW, Harris J, Mellor IR (2012) Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors. Eur J Pharmacol 686(1–3): 22–31. https://doi.org/10.1016/j.ejphar.2012.04.036
- Eriksson M, Nilsson A, Samuelsson H, Samuelsson EB, Mo L, Akesson E, Benedikz E, Sundström E (2007) On the role of GLUN3A in human NMDA receptors. Physiol Behav 92(1–2): 54–59. https://doi.org/10.1016/j.physbeh.2007.05.026
- Eriksson M, Nilsson A, Froelich-Fabre S, Akesson E, Dunker J, Seiger A, Folkesson R, Benedikz E, Sundström E (2002) Cloning and expression of the human N-methyl-D-aspartate receptor subunit GLUN3A. Neurosci Lett 321(3): 177–181. https://doi.org/10.1016/s0304-3940(01)02524-1
- Nilsson A, Duan J, Mo-Boquist LL, Benedikz E, Sundström E (2007) Characterisation of the human NMDA receptor subunit GLUN3A glycine binding site. Neuropharmacology 52(4): 1151–1159. https://doi.org/10.1016/j.neuropharm.2006.12.002
- Nilsson A, Eriksson M, Muly EC, Akesson E, Samuelsson EB, Bogdanovic N, Benedikz E, Sundström E (2007) Analysis of GLUN3A receptor subunits in human native NMDA receptors. Brain Res 1186: 102–112. https://doi.org/10.1016/j.brainres.2007.09.008
- Stroebel D, Mony L, Paoletti P (2021) Glycine agonism in ionotropic glutamate receptors. Neuropharmacology 193: 108631. https://doi.org/10.1016/j.neuropharm.2021.108631
- Yuan T, Bellone C (2013) Glutamatergic receptors at developing synapses: The role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors. Eur J Pharmacol 719(1–3): 107–111. https://doi.org/10.1016/j.ejphar.2013.04.056
- Давыдова ОН, Болдырев АА (2007) Глутаматные рецепторы в клетках нервной и иммунной систем. Анналы клин экспер неврол 1(4): 28–34. [Davydova ON, Boldyrev AA (2007) Glutamate receptors in cells of the nervous and immune systems. Ann Clin Exp Neurol 1(4): 28–34. (In Russ)].
- Luo T, Wu WH, Chen BS (2011) NMDA receptor signaling: Death or survival? Front Biol (Beijing) 6(6): 468–476. https://doi.org/10.1007/s11515-011-1187-6
- Mueller HT, Meador-Woodruff JH (2004) GLUN3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder. Schizophr Res 71(2–3): 361–370. https://doi.org/10.1016/j.schres.2004.02.016
- Crawley O, Conde-Dusman MJ, Pérez-Otaño I (2022) GluN3A NMDA receptor subunits: More enigmatic than ever? J Physiol 600(2): 261–276. https://doi.org/10.1113/JP280879
- Wada A, Takahashi H, Lipton SA, Chen HS (2006) GLUN3A modulates the outer vestibule of the “NMDA” receptor channel. J Neurosci 26(51): 13156–13166. https://doi.org/10.1523/JNEUROSCI.2552-06.2006
- Lee JH, Wei L, Deveau TC, Gu X, Yu SP (2016) Expression of the NMDA receptor subunit GluN3A (GLUN3A) in the olfactory system and its regulatory role on olfaction in the adult mouse. Brain Struct Funct 221(6): 3259–3273. https://doi.org/10.1007/s00429-015-1099-3
- Бронштейн АА (1977) Обонятельные рецепторы позвоночных: монография. Л. Наука. [Bronstein AA (1977) Olfactory receptors of vertebrates: monograph. L. Nauka. (In Russ)].
- Borgmann-Winter KE, Rawson NE, Wang HY, Wang H, Macdonald ML, Ozdener MH, Yee KK, Gomez G, Xu J, Bryant B, Adamek G, Mirza N, Pribitkin E, Hahn CG (2009) Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 158(2): 642–653. https://doi.org/10.1016/j.neuroscience.2008.09.059
- Lavoie J, Sawa A, Ishizuka K (2017) Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research. Curr Opin Psychiatry 30(3): 176–183. https://doi.org/10.1097/YCO.0000000000000327
- Sattler R, Ayukawa Y, Coddington L, Sawa A, Block D, Chipkin R, Rothstein JD (2011) Human nasal olfactory epithelium as a dynamic marker for CNS therapy development. Exp Neurol 232(2): 203–211. https://doi.org/10.1016/j.expneurol.2011.09.002
- Рыбникова АВ, Макарова МН (2015) Методы эвтаназии лабораторных животных в соответствии с Европейской директивой 2010/63. Междунар вестн ветер 2: 96. [Rybnikova AV, Makarova MN (2015) Methods of euthanasia of laboratory animals in accordance with the European Directive 2010/63. Int J Veter Med 2: 96. (In Russ)].
- Carr VM, Farbman AI (1993) The dynamics of cell death in the olfactory epithelium. Exp Neurol 124(2): 308–314. https://doi.org/10.1006/exnr.1993.1201
- Awobuluyi M, Yang J, Ye Y, Chatterton JE, Godzik A, Lipton SA, Zhang D (2007) Subunit-specific roles of glycine-binding domains in activation of GLUN1/NR3 N-methyl-D-aspartate receptors. Mol Pharmacol 71(1): 112–122. https://doi.org/10.1124/mol.106.030700
- Villmann C, Becker CM (2007) On the hypes and falls in neuroprotection: Targeting the NMDA receptor. Neuroscientist 13(6): 594–615. https://doi.org/10.1177/1073858406296259
- Tong G, Takahashi H, Tu S, Shin Y, Talantova M, Zago W, Xia P, Nie Z, Goetz T, Zhang D, Lipton SA, Nakanishi N (2008) Modulation of NMDA receptor properties and synaptic transmission by the GLUN3A subunit in mouse hippocampal and cerebrocortical neurons. J Neurophysiol 99(1): 122–132. https://doi.org/10.1152/jn.01044.2006
- Бигдай ЕВ, Самойлов ВО (2022) Влияние нейротрансмиттеров на функционирование обонятельных сенсорных нейронов. Рос физиол журн им ИМ Сеченова 108(6): 699–711. [Bigday EV, Samoilov VO (2022) The effect of neurotransmitters on the functioning of olfactory sensory neurons. Russ J Physiol 108(6): 699–711. (In Russ)]. https://doi.org/10.31857/S0869813922060012
- Thukral V, Chikaraishi D, Hunter DD, Wang JK (1997) Expression of non-N-methyl-D-aspartate glutamate receptor subunits in the olfactory epithelium. Neuroscience 79(2): 411–424. https://doi.org/10.1016/s0306-4522(96)00699-9
- Sproul A, Steele SL, Thai TL, Yu S, Klein JD, Sands JM, Bell PD (2011) N-methyl-D-aspartate receptor subunit GluN3A expression and function in principal cells of the collecting duct. Am J Physiol Renal Physiol 301(1): F44–F54. https://doi.org/10.1152/ajprenal.00666.2010
- Smothers CT, Woodward JJ (2007) Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate GLUN1 and NR3 subunits. J Pharmacol Exp Ther 322(2): 739–748. https://doi.org/10.1124/jpet.107.123836
- Pun RY, Kleene SJ (2003) Contribution of cyclic-nucleotide-gated channels to the resting conductance of olfactory receptor neurons. Biophys J 84(5): 3425–3435. https://doi.org/10.1016/S0006-3495(03)70064-2
- Bigdaj EV, Fufachev DK, Petrov PR, Samojlov VO (2017) Mechanisms of electromechanical and electrochemical coupling in olfactory cilia of the frog (Rana temporaria). Biophysics 62(2): 240–246.https://doi.org/10.1134/S0006350917020051
- Andreeva N, Khodorov B, Stelmashook E, Cragoe E Jr, Victorov I (1991) Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res 548(1–2): 322–325. https://doi.org/10.1016/0006-8993(91)91141-m
- Gomez G, Lischka FW, Haskins ME, Rawson NE (2005) Evidence for multiple calcium response mechanisms in mammalian olfactory receptor neurons. Chem Senses 30(4): 317–326. https://doi.org/10.1093/chemse/bji026
- Castillo K, Delgado R, Bacigalupo J (2007) Plasma membrane Ca(2+)-ATPase in the cilia of olfactory receptor neurons: possible role in Ca(2+) clearance. Eur J Neurosci 26(9): 2524–2531. https://doi.org/10.1111/j.1460-9568.2007.05863.x
- Khodorov B (2004) Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog Biophys Mol Biol 86(2): 279–351. https://doi.org/10.1016/j.pbiomolbio.2003.10.002
- Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA (2002) Characterization and comparison of the GLUN3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87(4): 2052–2063. https://doi.org/10.1152/jn.00531.2001
- Henson MA, Roberts AC, Pérez-Otaño I, Philpot BD (2010) Influence of the NR3A subunit on NMDA receptor functions. Prog Neurobiol 91(1): 23–37. https://doi.org/10.1016/j.pneurobio.2010.01.004
- Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8): 623–634. https://doi.org/10.1016/0896-6273(88)90162-6
- Kirstein CL, Coopersmith R, Bridges RJ, Leon M (1991) Glutathione levels in olfactory and non-olfactory neural structures of rats. Brain Res 543(2): 341–346. https://doi.org/10.1016/0006-8993(91)90047-y
Supplementary files
