Nos3 Gene Knockout in Mice Enhances Kidney Sensitivity to Furosemide
- Authors: Kutina A.V.1,2, Belyakov G.V.1,2, Balbotkina E.V.1, Chirinskaite A.V.2, Sopova J.V.2, Leonova E.I.2
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Saint Petersburg State University
- Issue: Vol 111, No 5 (2025)
- Pages: 806-818
- Section: EXPERIMENTAL ARTICLES
- URL: https://bulletin.ssaa.ru/0869-8139/article/view/686281
- DOI: https://doi.org/10.31857/S0869813925050107
- EDN: https://elibrary.ru/TMYTNY
- ID: 686281
Cite item
Abstract
Nitric oxide (NO) regulates renal hemodynamics and inhibits tubular sodium reabsorption. NO formation is catalyzed by NO synthases (NOS), and it is important to study the role of individual NO synthases for renal functions. The purpose of the study was to obtain a line of mice with a knockout of the nos3 gene (NOS KO) and to evaluate their ion-regulatory renal function. A homozygous line of NOS KO mice was developed at the background of the C57Bl/6 line using the CRISPR-Cas9 editing method. The physiological study included 39 animals (10 female and 10 male C57Bl/6 mice; 10 female and 9 male NOS KO mice); genotyping was carried out using PCR and sequencing methods at the age of 4 weeks. To identify differences in the transport of sodium and potassium in the kidneys of NOS KO mice, experiments were conducted to assess ion excretion in animals when given water (control), with a NaCl load (7.7 μmol/g) and with the administration of a loop diuretic. In the control, no differences were detected in the excretion of sodium and potassium ions in NOS KO and C57Bl/6 mice. Under conditions of excess NaCl intake, no significant interstrain differences were also revealed: sodium and potassium excretion increased by 8.8 and 1.3 times in NOS KO mice and by 8.4 and 1.7 times in wild-type mice, respectively. The natriuretic effect of furosemide (5 μg/g) in NOS KO mice was greater than in C57Bl/6 mice. Urinary sodium excretion was 4.1 ± 0.3 µmol/g during 2 hours of observation in NOS KO and 2.7 ± 0.2 µmol/g in wild-type mice (p < 0.001). Thus, the work revealed for the first time an increase in sensitivity to furosemide in mice with a knockout of the nos3 gene, which may indicate the importance of the activity of endothelial NO synthase for the regulation of sodium transport in the thick ascending limb of the loop of Henle.
Full Text

About the authors
A. V. Kutina
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg State University
Author for correspondence.
Email: kutina_anna@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg
G. V. Belyakov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg State University
Email: kutina_anna@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg
E. V. Balbotkina
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: kutina_anna@mail.ru
Russian Federation, Saint Petersburg
A. V. Chirinskaite
Saint Petersburg State University
Email: kutina_anna@mail.ru
Russian Federation, Saint Petersburg
J. V. Sopova
Saint Petersburg State University
Email: kutina_anna@mail.ru
Russian Federation, Saint Petersburg
E. I. Leonova
Saint Petersburg State University
Email: kutina_anna@mail.ru
Russian Federation, Saint Petersburg
References
- Elmarakby AA, Saad KM, Crislip GR, Sullivan JC (2023) Acute nitric oxide synthase inhibition induces greater increases in blood pressure in female versus male Wistar Kyoto rats. Physiol Rep 11(15): e15771. https://doi.org/10.14814/phy2.15771
- Huang PL (2000) Mouse models of nitric oxide synthase deficiency. J Am Soc Nephrol Suppl 16: S120–S123. https://doi.org/10.1681/ASN.V11suppl_2s120
- Hosseini N, Kourosh-Arami M, Nadjafi S, Ashtari B (2022) Structure, Distribution, Regulation, and Function of Splice Variant Isoforms of Nitric Oxide Synthase Family in the Nervous System. Curr Protein Pept Sci 23(8): 510–534. https://doi.org/10.2174/1389203723666220823151326
- Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG (2023) The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 13(1): 4215–4229. https://doi.org/10.1002/cphy.c210043
- Noonan WT, Banks RO (1999) The role of nitric oxide in saline-induced natriuresis and diuresis in rats. Proc Soc Exp Biol Med 221(4): 376–381. https://doi.org/10.1046/j.1525-1373.1999.d01-95.x
- Lage RC, Campagnole-Santos MJ, Fontes MA, Santos RA (1999) Cardiovascular effects produced by nitric oxide-related drugs in the caudal ventrolateral medulla. Neuroreport 10(4): 731–735. https://doi.org/10.1097/00001756-199903170-00013
- Szentiványi M Jr, Park F, Maeda CY, Cowley AW Jr (2000) Nitric oxide in the renal medulla protects from vasopressin-induced hypertension. Hypertension 35(3): 740–745. https://doi.org/10.1161/01.hyp.35.3.740
- Tsutsui M, Shimokawa H, Morishita T, Nakashima Y, Yanagihara N (2006) Development of genetically engineered mice lacking all three nitric oxide synthases. J Pharmacol Sci 102(2): 147–154. https://doi.org/10.1254/jphs.cpj06015x
- Hyndman KA, Pollock JS (2013) Nitric oxide and the A and B of endothelin of sodium homeostasis. Curr Opin Nephrol Hypertens 22(1): 26–31. https://doi.org/10.1097/MNH.0b013e32835b4edc
- Wang T, Inglis FM, Kalb RG (2000) Defective fluid and HCO(3)(-) absorption in proximal tubule of neuronal nitric oxide synthase-knockout mice. Am J Physiol Renal Physiol 279(3): F518–F524. https://doi.org/10.1152/ajprenal.2000.279.3.F518
- Lu Y, Wei J, Stec DE, Roman RJ, Ge Y, Cheng L, Liu EY, Zhang J, Hansen PB, Fan F, Juncos LA, Wang L, Pollock J, Huang PL, Fu Y, Wang S, Liu R (2016) Macula Densa Nitric Oxide Synthase 1β Protects against Salt-Sensitive Hypertension. J Am Soc Nephrol 27(8): 2346–2356. https://doi.org/10.1681/ASN.2015050515
- Hyndman KA, Boesen EI, Elmarakby AA, Brands MW, Huang P, Kohan DE, Pollock DM, Pollock JS (2013) Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure. Hypertension 62(1): 91–98. https://doi.org/10.1161/HYPERTENSIONAHA.113.01291
- Hyndman KA, Mironova EV, Giani JF, Dugas C, Collins J, McDonough AA, Stockand JD, Pollock JS (2017) Collecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways. J Am Heart Assoc 6(10): e006896. https://doi.org/10.1161/JAHA.117.006896
- Mendoza LD, Hyndman KA (2019) The contribution of collecting duct NOS1 to the concentrating mechanisms in male and female mice. Am J Physiol Renal Physiol 317(3): F547–F559. https://doi.org/10.1152/ajprenal.00180.2019
- Kopkan L, Hess A, Husková Z, Cervenka L, Navar LG, Majid DS (2010) High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. Am J Physiol Renal Physiol 299(3): F656–F663. https://doi.org/10.1152/ajprenal.00047.2010
- Takahashi T, Harris RC (2014) Role of endothelial nitric oxide synthase in diabetic nephropathy: Lessons from diabetic eNOS knockout mice. J Diabetes Res 2014: 590541. https://doi.org/10.1155/2014/590541
- Kosugi T, Heinig M, Nakayama T, Matsuo S, Nakagawa T (2010) eNOS knockout mice with advanced diabetic nephropathy have less benefit from renin-angiotensin blockade than from aldosterone receptor antagonists. Am J Pathol 176(2): 619–629. https://doi.org/10.2353/ajpath.2010.090578
- Gao Y, Stuart D, Takahishi T, Kohan DE (2018) Nephron-Specific Disruption of Nitric Oxide Synthase 3 Causes Hypertension and Impaired Salt Excretion. J Am Heart Assoc 7(14): e009236. https://doi.org/10.1161/JAHA.118.009236
- Litscher ES, Wassarman PM (2010) Isolation and manipulation of mouse gametes and embryos. Methods Enzymol 476: 73–84. https://doi.org/10.1016/S0076-6879(10)76005-5
- Doe B, Brown E, Boroviak K (2018) Generating CRISPR/Cas9-Derived Mutant Mice by Zygote Cytoplasmic Injection Using an Automatic Microinjector. Methods Protoc 1(1): 5. https://doi.org/10.3390/mps1010005
- Hasegawa A, Mochida K, Ogonuki N, Hirose M, Tomishima T, Inoue K, Ogura A (2017) Efficient and scheduled production of pseudopregnant female mice for embryo transfer by estrous cycle synchronization. J Reprod Dev 63(6): 539–545. https://doi.org/10.1262/jrd.2017-068
- Preece C, Alghadban S, Bouchareb A, Moralli D, Biggs D, Davies B (2021) Replacement of surgical vasectomy through the use of wild-type sterile hybrids. Lab Anim (NY) 50(2): 49–52. https://doi.org/10.1038/s41684-020-00692-w
- Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1): 52–54. https://doi.org/10.2144/00291bm09
- Kutina AV, Golosova DV, Marina AS, Shakhmatova EI, Natochin YV (2016) Role of Vasopressin in the Regulation of Renal Sodium Excretion: Interaction with Glucagon-Like Peptide-1. J Neuroendocrinol 28(4). https://doi.org/10.1111/jne.12367
- Kutina AV, Marina AS, Shakhmatova EI, Natochin YV (2013) Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin Exp Pharmacol Physiol 40(8): 510–517. https://doi.org/10.1111/1440-1681.12119
- Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, Castelo-Branco RC, Pastor-Soler N, Arranz CT, Yu ASL, McDonough AA (2017) Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis. J Am Soc Nephrol 28(12): 3504–3517. https://doi.org/10.1681/ASN.2017030295.
- McDonough AA, Layton AT (2023) Sex differences in renal electrolyte transport. Curr Opin Nephrol Hypertens 32(5): 467–475. https://doi.org/10.1097/MNH.0000000000000909
- Riazi S, Tiwari S, Sharma N, Rash A, Ecelbarger CM (2009) Abundance of the Na-K-2Cl cotransporter NKCC2 is increased by high-fat feeding in Fischer 344 X Brown Norway (F1) rats. Am J Physiol Renal Physiol 296(4): F762–F770. https://doi.org/10.1152/ajprenal.90484.2008
- Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V (2007) Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 21(13): 3717–3726. https://doi.org/10.1096/fj.07-8807com
- Jonassen TE, Brond L, Torp M, Graebe M, Nielsen S, Skott O, Marcussen N, Christensen S (2003) Effects of renal denervation on tubular sodium handling in rats with CBL-induced liver cirrhosis. Am J Physiol Renal Physiol 284(3): F555–F563. https://doi.org/10.1152/ajprenal.00258.2002
- Riazi S, Madala-Halagappa VK, Hu X, Ecelbarger CA (2006) Sex and body-type interactions in the regulation of renal sodium transporter levels, urinary excretion, and activity in lean and obese Zucker rats. Gend Med 3(4): 309–327. https://doi.org/10.1016/s1550-8579(06)80219-6
- Ramseyer VD, Ortiz PA, Carretero OA, Garvin JL (2016) Angiotensin II-mediated hypertension impairs nitric oxide-induced NKCC2 inhibition in thick ascending limbs. Am J Physiol Renal Physiol 310(8): F748–F754. https://doi.org/10.1152/ajprenal.00473.2015
- Ortiz PA, Hong NJ, Wang D, Garvin JL (2003) Gene transfer of eNOS to the thick ascending limb of eNOS-KO mice restores the effects of L-arginine on NaCl absorption. Hypertension 42(4): 674–679. https://doi.org/10.1161/01.HYP.0000085561.00001.81
- Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide. Science 299(5608): 896–899. https://doi.org/10.1126/science.1079368
Supplementary files
